1887

Abstract

The role of the CcpC regulatory protein as a repressor of the genes encoding the tricarboxylic acid branch enzymes of the Krebs cycle (citrate synthase, ; aconitase, ; and isocitrate dehydrogenase, ) has been established for both and . In addition, hyperexpression of reporter constructs in an aconitase null mutant strain has been reported for . We show here that such hyperexpression of occurs in as well as in and that in both species the hyperexpression is unexpectedly dependent on CcpC. We propose a revision of the existing CcpC– regulatory scheme and suggest a mechanism of regulation in which CcpC represses expression at low citrate levels and activates expression when citrate levels are high.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063388-0
2013-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/68.html?itemId=/content/journal/micro/10.1099/mic.0.063388-0&mimeType=html&fmt=ahah

References

  1. Behari J., Youngman P..( 1998;). A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol180:6316–6324[PubMed]
    [Google Scholar]
  2. Belitsky B. R., Janssen P. J., Sonenshein A. L..( 1995;). Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J Bacteriol177:5686–5695[PubMed]
    [Google Scholar]
  3. Blencke H.-M., Reif I., Commichau F. M., Detsch C., Wacker I., Ludwig H., Stülke J..( 2006;). Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch Microbiol185:136–146 [CrossRef][PubMed]
    [Google Scholar]
  4. Brehm S. P., Staal S. P., Hoch J. A..( 1973;). Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. J Bacteriol115:1063–1070[PubMed]
    [Google Scholar]
  5. Chang M., Crawford I. P..( 1990;). The roles of indoleglycerol phosphate and the TrpI protein in the expression of trpBA from Pseudomonas aeruginosa. Nucleic Acids Res18:979–988 [CrossRef][PubMed]
    [Google Scholar]
  6. Craig J. E., Ford M. J., Blaydon D. C., Sonenshein A. L..( 1997;). A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. J Bacteriol179:7351–7359[PubMed]
    [Google Scholar]
  7. Dean D. R., Hoch J. A., Aronson A. I..( 1977;). Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol131:981–987[PubMed]
    [Google Scholar]
  8. Dingman D. W., Sonenshein A. L..( 1987;). Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J Bacteriol169:3062–3067[PubMed]
    [Google Scholar]
  9. Fliss I., Emond E., Simard R. E., Pandian S..( 1991;). A rapid and efficient method of lysis of Listeria and other Gram-positive bacteria using mutanolysin. Biotechniques11:453–, 456–457[PubMed]
    [Google Scholar]
  10. Fouet A., Sonenshein A. L..( 1990;). A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J Bacteriol172:835–844[PubMed]
    [Google Scholar]
  11. Fouet A., Jin S. F., Raffel G., Sonenshein A. L..( 1990;). Multiple regulatory sites in the Bacillus subtilis citB promoter region. J Bacteriol172:5408–5415[PubMed]
    [Google Scholar]
  12. Gunka K., Newman J. A., Commichau F. M., Herzberg C., Rodrigues C., Hewitt L., Lewis R. J., Stülke J..( 2010;). Functional dissection of a trigger enzyme: mutations of the Bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J Mol Biol400:815–827 [CrossRef][PubMed]
    [Google Scholar]
  13. Handke L. D., Shivers R. P., Sonenshein A. L..( 2008;). Interaction of Bacillus subtilis CodY with GTP. J Bacteriol190:798–806 [CrossRef][PubMed]
    [Google Scholar]
  14. Huang J. Z., Schell M. A..( 1991;). In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation. J Biol Chem266:10830–10838[PubMed]
    [Google Scholar]
  15. Jault J. M., Fieulaine S., Nessler S., Gonzalo P., Di Pietro A., Deutscher J., Galinier A..( 2000;). The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem275:1773–1780 [CrossRef][PubMed]
    [Google Scholar]
  16. Jobe A., Bourgeois S..( 1972;). lac Repressor–operator interaction. VI. The natural inducer of the lac operon. J Mol Biol69:397–408 [CrossRef][PubMed]
    [Google Scholar]
  17. Jourlin-Castelli C., Mani N., Nakano M. M., Sonenshein A. L..( 2000;). CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol295:865–878 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim H. J., Jourlin-Castelli C., Kim S. I., Sonenshein A. L..( 2002a;). Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Mol Microbiol43:399–410 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim H. J., Roux A., Sonenshein A. L..( 2002b;). Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol45:179–190 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim H. J., Kim S. I., Ratnayake-Lecamwasam M., Tachikawa K., Sonenshein A. L., Strauch M..( 2003a;). Complex regulation of the Bacillus subtilis aconitase gene. J Bacteriol185:1672–1680 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim S. I., Jourlin-Castelli C., Wellington S. R., Sonenshein A. L..( 2003b;). Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J Mol Biol334:609–624 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim H. J., Mittal M., Sonenshein A. L..( 2006;). CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. J Bacteriol188:179–190 [CrossRef][PubMed]
    [Google Scholar]
  23. Maddocks S. E., Oyston P. C..( 2008;). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology154:3609–3623 [CrossRef][PubMed]
    [Google Scholar]
  24. Meiss H. K., Brill W. J., Magasanik B..( 1969;). Genetic control of histidine degradation in Salmonella typhimurium, strain LT-2. J Biol Chem244:5382–5391[PubMed]
    [Google Scholar]
  25. Miller J..( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mittal M..( 2008;). The roles of CcpC and CodY in regulation of Krebs cycle genes and virulence of Listeria monocytogenes. Tufts University, Boston, MA:
  27. Mittal M., Picossi S., Sonenshein A. L..( 2009;). CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes. J Bacteriol191:862–872 [CrossRef][PubMed]
    [Google Scholar]
  28. Picossi S., Belitsky B. R., Sonenshein A. L..( 2007;). Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol365:1298–1313 [CrossRef][PubMed]
    [Google Scholar]
  29. Serio A. W., Pechter K. B., Sonenshein A. L..( 2006;). Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. J Bacteriol188:6396–6405 [CrossRef][PubMed]
    [Google Scholar]
  30. Sonenshein A. L..( 2007;). Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol5:917–927 [CrossRef][PubMed]
    [Google Scholar]
  31. Toledano M. B., Kullik I., Trinh F., Baird P. T., Schneider T. D., Storz G..( 1994;). Redox-dependent shift of OxyR–DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell78:897–909 [CrossRef][PubMed]
    [Google Scholar]
  32. van Keulen G., Ridder A. N., Dijkhuizen L., Meijer W. G..( 2003;). Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol185:1245–1252 [CrossRef][PubMed]
    [Google Scholar]
  33. Villapakkam A. C., Handke L. D., Belitsky B. R., Levdikov V. M., Wilkinson A. J., Sonenshein A. L..( 2009;). Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids. J Bacteriol191:6865–6876 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang L., Winans S. C..( 1995;). The sixty nucleotide OccR operator contains a subsite essential and sufficient for OccR binding and a second subsite required for ligand-responsive DNA bending. J Mol Biol253:691–702 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063388-0
Loading
/content/journal/micro/10.1099/mic.0.063388-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error