1887

Abstract

Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from and the lipopeptide surfactin (Srf) from , have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in by Srf confers resistance toward GS from and allows survival in mixed cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063131-0
2012-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3072.html?itemId=/content/journal/micro/10.1099/mic.0.063131-0&mimeType=html&fmt=ahah

References

  1. Ahimou F. , Jacques P. , Deleu M. . ( 2000; ). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. . Enzyme Microb Technol 27:, 749–754. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arima K. , Kakinuma A. , Tamura G. . ( 1968; ). Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. . Biochem Biophys Res Commun 31:, 488–494. [CrossRef]
    [Google Scholar]
  3. Azuma T. , Demain A. L. . ( 1996; ). Interactions between gramicidin S and its producer, Bacillus brevis . . J Ind Microbiol 17:, 56–61. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bais H. P. , Fall R. , Vivanco J. M. . ( 2004; ). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. . Plant Physiol 134:, 307–319. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baltzer S. A. , Brown M. H. . ( 2011; ). Antimicrobial peptides: promising alternatives to conventional antibiotics. . J Mol Microbiol Biotechnol 20:, 228–235. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bonmatin J.-M. , Genest M. , Labbé H. , Ptak M. . ( 1994; ). Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics. . Biopolymers 34:, 975–986. [CrossRef] [PubMed]
    [Google Scholar]
  7. Branda S. S. , González-Pastor J. E. , Ben-Yehuda S. , Losick R. , Kolter R. . ( 2001; ). Fruiting body formation by Bacillus subtilis . . Proc Natl Acad Sci U S A 98:, 11621–11626. [CrossRef] [PubMed]
    [Google Scholar]
  8. Butcher B. G. , Helmann J. D. . ( 2006; ). Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli . . Mol Microbiol 60:, 765–782. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cao M. , Helmann J. D. . ( 2004; ). The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. . J Bacteriol 186:, 1136–1146. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cosby W. M. , Vollenbroich D. , Lee O. H. H. , Zuber P. . ( 1998; ). Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. . J Bacteriol 180:, 1438–1445.[PubMed]
    [Google Scholar]
  11. Cosmina P. , Rodriguez F. , de Ferra F. , Grandi G. , Perego M. , Venema G. , van Sinderen D. . ( 1993; ). Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis . . Mol Microbiol 8:, 821–831. [CrossRef] [PubMed]
    [Google Scholar]
  12. D’Costa V. M. , King C. E. , Kalan L. , Morar M. , Sung W. W. , Schwarz C. , Froese D. , Zazula G. , Calmels F. . & other authors ( 2011; ). Antibiotic resistance is ancient. . Nature 477:, 457–461. [CrossRef] [PubMed]
    [Google Scholar]
  13. Davies D. . ( 2003; ). Understanding biofilm resistance to antibacterial agents. . Nat Rev Drug Discov 2:, 114–122. [CrossRef] [PubMed]
    [Google Scholar]
  14. du Toit E. A. , Rautenbach M. . ( 2000; ). A sensitive standardized micro-gel well diffusion assay for the determination of antimicrobial activity. . J Microbiol Methods 42:, 159–165. [CrossRef]
    [Google Scholar]
  15. Ellermeier C. D. , Losick R. . ( 2006; ). Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis . . Genes Dev 20:, 1911–1922. [CrossRef] [PubMed]
    [Google Scholar]
  16. Epand R. M. , Vogel H. J. . ( 1999; ). Diversity of antimicrobial peptides and their mechanisms of action. . Biochim Biophys Acta 1462:, 11–28. [CrossRef] [PubMed]
    [Google Scholar]
  17. Friedrich C. , Scott M. G. , Karunaratne N. , Yan H. , Hancock R. E. W. . ( 1999; ). Salt-resistant alpha-helical cationic antimicrobial peptides. . Antimicrob Agents Chemother 43:, 1542–1548.[PubMed]
    [Google Scholar]
  18. Ganz T. . ( 2001; ). Fatal attraction evaded. How pathogenic bacteria resist cationic polypeptides. . J Exp Med 193:, F31–F34. [CrossRef] [PubMed]
    [Google Scholar]
  19. Guaní-Guerra E. , Santos-Mendoza T. , Lugo-Reyes S. O. , Terán L. M. . ( 2010; ). Antimicrobial peptides: general overview and clinical implications in human health and disease. . Clin Immunol 135:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  20. Haggag W. M. . ( 2008; ). Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. . Arch Phytopath Plant Protect 41:, 477–491. [CrossRef]
    [Google Scholar]
  21. Hofemeister J. , Conrad B. , Adler B. , Hofemeister B. , Feesche J. , Kucheryava N. , Steinborn G. , Franke P. , Grammel N. . & other authors ( 2004; ). Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. . Mol Genet Genomics 272:, 363–378. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ishigami Y. , Osman M. , Nakahara H. , Sano Y. , Ishiguro R. , Matsumoto M. . ( 1995; ). Significance of β-sheet formation for micellization and surface adsorption of surfactin. . Colloids Surf B Biointerfaces 4:, 341–348. [CrossRef]
    [Google Scholar]
  23. Jelokhani-Niaraki M. , Kondejewski L. H. , Farmer S. W. , Hancock R. E. W. , Kay C. M. , Hodges R. S. . ( 2000; ). Diastereoisomeric analogues of gramicidin S: structure, biological activity and interaction with lipid bilayers. . Biochem J 349:, 747–755.[PubMed]
    [Google Scholar]
  24. Jin T. , Bokarewa M. , Foster T. , Mitchell J. , Higgins J. , Tarkowski A. . ( 2004; ). Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. . J Immunol 172:, 1169–1176.[PubMed] [CrossRef]
    [Google Scholar]
  25. Jordan S. , Hutchings M. I. , Mascher T. . ( 2008; ). Cell envelope stress response in Gram-positive bacteria. . FEMS Microbiol Rev 32:, 107–146. [CrossRef] [PubMed]
    [Google Scholar]
  26. Joseph P. , Fichant G. , Quentin Y. , Denizot F. . ( 2002; ). Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. . J Mol Microbiol Biotechnol 4:, 503–513.[PubMed]
    [Google Scholar]
  27. Julkowska D. , Obuchowski M. , Holland I. B. , Séror S. J. . ( 2004; ). Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. . Microbiology 150:, 1839–1849. [CrossRef] [PubMed]
    [Google Scholar]
  28. Julkowska D. , Obuchowski M. , Holland I. B. , Séror S. J. . ( 2005; ). Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. . J Bacteriol 187:, 65–76. [CrossRef] [PubMed]
    [Google Scholar]
  29. Katsu T. , Ninomiya C. , Kuroko M. , Kobayashi H. , Hirota T. , Fujita Y. . ( 1988; ). Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. . Biochim Biophys Acta 939:, 57–63. [CrossRef] [PubMed]
    [Google Scholar]
  30. Katz E. , Demain A. L. . ( 1977; ). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. . Bacteriol Rev 41:, 449–474.[PubMed]
    [Google Scholar]
  31. Kearns D. B. , Losick R. . ( 2003; ). Swarming motility in undomesticated Bacillus subtilis . . Mol Microbiol 49:, 581–590. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kim H.-S. , Kim S.-B. , Park S.-H. , Oh H.-M. , Park Y.-I. , Kim C.-K. , Katsuragi T. , Tani Y. , Yoon B.-D. . ( 2000; ). Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis . . Biotechnol Lett 22:, 1431–1436. [CrossRef]
    [Google Scholar]
  33. Kinsinger R. F. , Shirk M. C. , Fall R. . ( 2003; ). Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. . J Bacteriol 185:, 5627–5631. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kluge B. , Vater J. , Salnikow J. , Eckart K. . ( 1988; ). Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. . FEBS Lett 231:, 107–110. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kondejewski L. H. , Farmer S. W. , Wishart D. S. , Hancock R. E. , Hodges R. S. . ( 1996; ). Gramicidin S is active against both gram-positive and gram-negative bacteria. . Int J Pept Protein Res 47:, 460–466. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kracht M. , Rokos H. , Ozel M. , Kowall M. , Pauli G. , Vater J. . ( 1999; ). Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. . J Antibiot (Tokyo) 52:, 613–619. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kunst F. , Ogasawara N. , Moszer I. , Albertini A. M. , Alloni G. , Azevedo V. , Bertero M. G. , Bessières P. , Bolotin A. . & other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . . Nature 390:, 249–256. [CrossRef] [PubMed]
    [Google Scholar]
  38. Laiken S. , Printz M. , Craig L. C. . ( 1969; ). Circular dichroism of the tyrocidines and gramicidin S-A. . J Biol Chem 244:, 4454–4457.[PubMed]
    [Google Scholar]
  39. Lee D. L. , Powers J. P. , Pflegerl K. , Vasil M. L. , Hancock R. E. W. , Hodges R. S. . ( 2004; ). Effects of single d-amino acid substitutions on disruption of β-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. . J Pept Res 63:, 69–84. [CrossRef] [PubMed]
    [Google Scholar]
  40. Leenders F. , Stein T. H. , Kablitz B. , Franke P. , Vater J. . ( 1999; ). Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. . Rapid Commun Mass Spectrom 13:, 943–949. [CrossRef]
    [Google Scholar]
  41. Lehrer R. I. , Rosenman M. , Harwig S. S. S. L. , Jackson R. , Eisenhauer P. . ( 1991; ). Ultrasensitive assays for endogenous antimicrobial polypeptides. . J Immunol Methods 137:, 167–173. [CrossRef] [PubMed]
    [Google Scholar]
  42. López D. , Vlamakis H. , Losick R. , Kolter R. . ( 2009a; ). Cannibalism enhances biofilm development in Bacillus subtilis . . Mol Microbiol 74:, 609–618. [CrossRef] [PubMed]
    [Google Scholar]
  43. López D. , Fischbach M. A. , Chu F. , Losick R. , Kolter R. . ( 2009b; ). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis . . Proc Natl Acad Sci U S A 106:, 280–285. [CrossRef] [PubMed]
    [Google Scholar]
  44. Maget-Dana R. , Ptak M. . ( 1995; ). Interactions of surfactin with membrane models. . Biophys J 68:, 1937–1943. [CrossRef] [PubMed]
    [Google Scholar]
  45. Maget-Dana R. , Thimon L. , Peypoux F. , Ptak M. . ( 1992; ). Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. . Biochimie 74:, 1047–1051. [CrossRef] [PubMed]
    [Google Scholar]
  46. Mah T.-F. C. , O’Toole G. A. . ( 2001; ). Mechanisms of biofilm resistance to antimicrobial agents. . Trends Microbiol 9:, 34–39. [CrossRef] [PubMed]
    [Google Scholar]
  47. Marr A. K. , Gooderham W. J. , Hancock R. E. W. . ( 2006; ). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. . Curr Opin Pharmacol 6:, 468–472. [CrossRef] [PubMed]
    [Google Scholar]
  48. Mascher T. , Margulis N. G. , Wang T. R. , Ye R. W. , Helmann J. D. . ( 2003; ). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. . Mol Microbiol 50:, 1591–1604. [CrossRef] [PubMed]
    [Google Scholar]
  49. Midez J. A. , Hopfer R. L. , López-Berestein G. , Mehta R. T. . ( 1989; ). Effects of free and liposomal amphotericin B and gramicidin S alone and in combination on potassium leakage from human erythrocytes and Candida albicans . . Antimicrob Agents Chemother 33:, 152–155. [CrossRef] [PubMed]
    [Google Scholar]
  50. Nakano M. M. , Marahiel M. A. , Zuber P. . ( 1988; ). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis . . J Bacteriol 170:, 5662–5668.[PubMed]
    [Google Scholar]
  51. Nakano M. M. , Magnuson R. , Myers A. , Curry J. , Grossman A. D. , Zuber P. . ( 1991; ). srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis . . J Bacteriol 173:, 1770–1778.[PubMed]
    [Google Scholar]
  52. Nandi S. , Seddon B. . ( 1978; ). Evidence for gramicidin S functioning as a bacterial hormone specifically regulating spore outgrowth in Bacillus brevis Nagano [proceedings]. . Biochem Soc Trans 6:, 409–411.[PubMed]
    [Google Scholar]
  53. Ohki R. , Tateno K. , Okada Y. , Okajima H. , Asai K. , Sadaie Y. , Murata M. , Aiso T. . ( 2003; ). A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. . J Bacteriol 185:, 51–59. [CrossRef] [PubMed]
    [Google Scholar]
  54. Peschel A. , Sahl H. G. . ( 2006; ). The co-evolution of host cationic antimicrobial peptides and microbial resistance. . Nat Rev Microbiol 4:, 529–536. [CrossRef] [PubMed]
    [Google Scholar]
  55. Peypoux F. , Bonmatin J. M. , Wallach J. . ( 1999; ). Recent trends in the biochemistry of surfactin. . Appl Microbiol Biotechnol 51:, 553–563. [CrossRef] [PubMed]
    [Google Scholar]
  56. Pietiäinen M. , Gardemeister M. , Mecklin M. , Leskelä S. , Sarvas M. , Kontinen V. P. . ( 2005; ). Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type α factors and two-component signal transduction systems. . Microbiology 151:, 1577–1592. [CrossRef] [PubMed]
    [Google Scholar]
  57. Podlesek Z. , Comino A. , Herzog-Velikonja B. , Grabnar M. . ( 2000; ). The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. . FEMS Microbiol Lett 188:, 103–106. [CrossRef] [PubMed]
    [Google Scholar]
  58. Price N. P. J. , Rooney A. P. , Swezey J. L. , Perry E. , Cohan F. M. . ( 2007; ). Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. . FEMS Microbiol Lett 271:, 83–89. [CrossRef] [PubMed]
    [Google Scholar]
  59. Raaijmakers J. M. , De Bruijn I. , Nybroe O. , Ongena M. . ( 2010; ). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. . FEMS Microbiol Rev 34:, 1037–1062.[PubMed]
    [Google Scholar]
  60. Sarika I. , Iquebal M. A. , Rai A. . ( 2012; ). Biotic stress resistance in agriculture through antimicrobial peptides. . Peptides 36:, 322–330. [CrossRef] [PubMed]
    [Google Scholar]
  61. Schaeffer P. . ( 1969; ). Sporulation and the production of antibiotics, exoenzymes, and exotonins. . Bacteriol Rev 33:, 48–71.[PubMed]
    [Google Scholar]
  62. Servin A. L. . ( 2004; ). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. . FEMS Microbiol Rev 28:, 405–440. [CrossRef] [PubMed]
    [Google Scholar]
  63. Shida O. , Takagi H. , Kadowaki K. , Komagata K. . ( 1996; ). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.. Int J Syst Bacteriol 46:, 939–946. [CrossRef] [PubMed]
    [Google Scholar]
  64. Sogawa K. , Watanabe M. , Sato K. , Segawa S. , Ishii C. , Miyabe A. , Murata S. , Saito T. , Nomura F. . ( 2011; ). Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. . Anal Bioanal Chem 400:, 1905–1911. [CrossRef] [PubMed]
    [Google Scholar]
  65. Staroń A. , Finkeisen D. E. , Mascher T. . ( 2011; ). Peptide antibiotic sensing and detoxification modules of Bacillus subtilis . . Antimicrob Agents Chemother 55:, 515–525. [CrossRef] [PubMed]
    [Google Scholar]
  66. Stern A. , Gibbons W. A. , Craig L. C. . ( 1968; ). A conformational analysis of gramicidin S-A by nuclear magnetic resonance. . Proc Natl Acad Sci U S A 61:, 734–741. [CrossRef] [PubMed]
    [Google Scholar]
  67. Thimon L. , Peypoux F. , Maget-Dana R. , Roux B. , Michel G. . ( 1992; ). Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis . . Biotechnol Appl Biochem 16:, 144–151.[PubMed]
    [Google Scholar]
  68. Tosato V. , Albertini A. M. , Zotti M. , Sonda S. , Bruschi C. V. . ( 1997; ). Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. . Microbiology 143:, 3443–3450. [CrossRef] [PubMed]
    [Google Scholar]
  69. Tsukagoshi N. , Tamura G. , Arima K. . ( 1970; ). A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The effects of surfactin on Bacillus megaterium KM. . Biochim Biophys Acta 196:, 204–210. [CrossRef] [PubMed]
    [Google Scholar]
  70. Vater J. , Kablitz B. , Wilde C. , Franke P. , Mehta N. , Cameotra S. S. . ( 2002; ). Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. . Appl Environ Microbiol 68:, 6210–6219. [CrossRef] [PubMed]
    [Google Scholar]
  71. Vater J. , Wilde C. , Kell H. . ( 2009; ). In situ detection of the intermediates in the biosynthesis of surfactin, a lipoheptapeptide from Bacillus subtilis OKB 105, by whole-cell cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in combination with mutant analysis. . Rapid Commun Mass Spectrom 23:, 1493–1498. [CrossRef] [PubMed]
    [Google Scholar]
  72. Vollenbroich D. , Mehta N. , Zuber P. , Vater J. , Kamp R. M. . ( 1994; ). Analysis of surfactin synthetase subunits in srfA mutants of Bacillus subtilis OKB105. . J Bacteriol 176:, 395–400.[PubMed]
    [Google Scholar]
  73. Volpon L. . ( 2001; ). Ca2+-induced changes of surfactin conformation: a FTIR and circular dichroism study. . Biochem Biophys Res Commun 367:, 361–367.
    [Google Scholar]
  74. Walsh C. T. . ( 2004; ). Polyketide and nonribosomal peptide antibiotics: modularity and versatility. . Science 303:, 1805–1810. [CrossRef] [PubMed]
    [Google Scholar]
  75. Xu K. D. , McFeters G. A. , Stewart P. S. . ( 2000; ). Biofilm resistance to antimicrobial agents. . Microbiology 146:, 547–549.[PubMed]
    [Google Scholar]
  76. Yeaman M. R. , Yount N. Y. . ( 2003; ). Mechanisms of antimicrobial peptide action and resistance. . Pharmacol Rev 55:, 27–55. [CrossRef] [PubMed]
    [Google Scholar]
  77. Zasloff M. . ( 2002; ). Antimicrobial peptides of multicellular organisms. . Nature 415:, 389–395. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063131-0
Loading
/content/journal/micro/10.1099/mic.0.063131-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error