1887

Abstract

Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from and the lipopeptide surfactin (Srf) from , have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in by Srf confers resistance toward GS from and allows survival in mixed cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063131-0
2012-12-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3072.html?itemId=/content/journal/micro/10.1099/mic.0.063131-0&mimeType=html&fmt=ahah

References

  1. Ahimou F., Jacques P., Deleu M.. ( 2000;). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol27:749–754 [CrossRef][PubMed]
    [Google Scholar]
  2. Arima K., Kakinuma A., Tamura G.. ( 1968;). Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun31:488–494 [CrossRef]
    [Google Scholar]
  3. Azuma T., Demain A. L.. ( 1996;). Interactions between gramicidin S and its producer, Bacillus brevis . J Ind Microbiol17:56–61 [CrossRef][PubMed]
    [Google Scholar]
  4. Bais H. P., Fall R., Vivanco J. M.. ( 2004;). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol134:307–319 [CrossRef][PubMed]
    [Google Scholar]
  5. Baltzer S. A., Brown M. H.. ( 2011;). Antimicrobial peptides: promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol20:228–235 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonmatin J.-M., Genest M., Labbé H., Ptak M.. ( 1994;). Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics. Biopolymers34:975–986 [CrossRef][PubMed]
    [Google Scholar]
  7. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R.. ( 2001;). Fruiting body formation by Bacillus subtilis . Proc Natl Acad Sci U S A98:11621–11626 [CrossRef][PubMed]
    [Google Scholar]
  8. Butcher B. G., Helmann J. D.. ( 2006;). Identification of Bacillus subtilis σW-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli . Mol Microbiol60:765–782 [CrossRef][PubMed]
    [Google Scholar]
  9. Cao M., Helmann J. D.. ( 2004;). The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol186:1136–1146 [CrossRef][PubMed]
    [Google Scholar]
  10. Cosby W. M., Vollenbroich D., Lee O. H. H., Zuber P.. ( 1998;). Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol180:1438–1445[PubMed]
    [Google Scholar]
  11. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D.. ( 1993;). Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis . Mol Microbiol8:821–831 [CrossRef][PubMed]
    [Google Scholar]
  12. D’Costa V. M., King C. E., Kalan L., Morar M., Sung W. W., Schwarz C., Froese D., Zazula G., Calmels F.. & other authors ( 2011;). Antibiotic resistance is ancient. Nature477:457–461 [CrossRef][PubMed]
    [Google Scholar]
  13. Davies D.. ( 2003;). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2:114–122 [CrossRef][PubMed]
    [Google Scholar]
  14. du Toit E. A., Rautenbach M.. ( 2000;). A sensitive standardized micro-gel well diffusion assay for the determination of antimicrobial activity. J Microbiol Methods42:159–165 [CrossRef]
    [Google Scholar]
  15. Ellermeier C. D., Losick R.. ( 2006;). Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis . Genes Dev20:1911–1922 [CrossRef][PubMed]
    [Google Scholar]
  16. Epand R. M., Vogel H. J.. ( 1999;). Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta1462:11–28 [CrossRef][PubMed]
    [Google Scholar]
  17. Friedrich C., Scott M. G., Karunaratne N., Yan H., Hancock R. E. W.. ( 1999;). Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother43:1542–1548[PubMed]
    [Google Scholar]
  18. Ganz T.. ( 2001;). Fatal attraction evaded. How pathogenic bacteria resist cationic polypeptides. J Exp Med193:F31–F34 [CrossRef][PubMed]
    [Google Scholar]
  19. Guaní-Guerra E., Santos-Mendoza T., Lugo-Reyes S. O., Terán L. M.. ( 2010;). Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol135:1–11 [CrossRef][PubMed]
    [Google Scholar]
  20. Haggag W. M.. ( 2008;). Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch Phytopath Plant Protect41:477–491 [CrossRef]
    [Google Scholar]
  21. Hofemeister J., Conrad B., Adler B., Hofemeister B., Feesche J., Kucheryava N., Steinborn G., Franke P., Grammel N.. & other authors ( 2004;). Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics272:363–378 [CrossRef][PubMed]
    [Google Scholar]
  22. Ishigami Y., Osman M., Nakahara H., Sano Y., Ishiguro R., Matsumoto M.. ( 1995;). Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B Biointerfaces4:341–348 [CrossRef]
    [Google Scholar]
  23. Jelokhani-Niaraki M., Kondejewski L. H., Farmer S. W., Hancock R. E. W., Kay C. M., Hodges R. S.. ( 2000;). Diastereoisomeric analogues of gramicidin S: structure, biological activity and interaction with lipid bilayers. Biochem J349:747–755[PubMed]
    [Google Scholar]
  24. Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A.. ( 2004;). Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol172:1169–1176[PubMed][CrossRef]
    [Google Scholar]
  25. Jordan S., Hutchings M. I., Mascher T.. ( 2008;). Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev32:107–146 [CrossRef][PubMed]
    [Google Scholar]
  26. Joseph P., Fichant G., Quentin Y., Denizot F.. ( 2002;). Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol4:503–513[PubMed]
    [Google Scholar]
  27. Julkowska D., Obuchowski M., Holland I. B., Séror S. J.. ( 2004;). Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology150:1839–1849 [CrossRef][PubMed]
    [Google Scholar]
  28. Julkowska D., Obuchowski M., Holland I. B., Séror S. J.. ( 2005;). Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol187:65–76 [CrossRef][PubMed]
    [Google Scholar]
  29. Katsu T., Ninomiya C., Kuroko M., Kobayashi H., Hirota T., Fujita Y.. ( 1988;). Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane. Biochim Biophys Acta939:57–63 [CrossRef][PubMed]
    [Google Scholar]
  30. Katz E., Demain A. L.. ( 1977;). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev41:449–474[PubMed]
    [Google Scholar]
  31. Kearns D. B., Losick R.. ( 2003;). Swarming motility in undomesticated Bacillus subtilis . Mol Microbiol49:581–590 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim H.-S., Kim S.-B., Park S.-H., Oh H.-M., Park Y.-I., Kim C.-K., Katsuragi T., Tani Y., Yoon B.-D.. ( 2000;). Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis . Biotechnol Lett22:1431–1436 [CrossRef]
    [Google Scholar]
  33. Kinsinger R. F., Shirk M. C., Fall R.. ( 2003;). Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol185:5627–5631 [CrossRef][PubMed]
    [Google Scholar]
  34. Kluge B., Vater J., Salnikow J., Eckart K.. ( 1988;). Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett231:107–110 [CrossRef][PubMed]
    [Google Scholar]
  35. Kondejewski L. H., Farmer S. W., Wishart D. S., Hancock R. E., Hodges R. S.. ( 1996;). Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Pept Protein Res47:460–466 [CrossRef][PubMed]
    [Google Scholar]
  36. Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J.. ( 1999;). Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo)52:613–619 [CrossRef][PubMed]
    [Google Scholar]
  37. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A.. & other authors ( 1997;). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature390:249–256 [CrossRef][PubMed]
    [Google Scholar]
  38. Laiken S., Printz M., Craig L. C.. ( 1969;). Circular dichroism of the tyrocidines and gramicidin S-A. J Biol Chem244:4454–4457[PubMed]
    [Google Scholar]
  39. Lee D. L., Powers J. P., Pflegerl K., Vasil M. L., Hancock R. E. W., Hodges R. S.. ( 2004;). Effects of single d-amino acid substitutions on disruption of β-sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide analogs related to gramicidin S. J Pept Res63:69–84 [CrossRef][PubMed]
    [Google Scholar]
  40. Leenders F., Stein T. H., Kablitz B., Franke P., Vater J.. ( 1999;). Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom13:943–949 [CrossRef]
    [Google Scholar]
  41. Lehrer R. I., Rosenman M., Harwig S. S. S. L., Jackson R., Eisenhauer P.. ( 1991;). Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods137:167–173 [CrossRef][PubMed]
    [Google Scholar]
  42. López D., Vlamakis H., Losick R., Kolter R.. ( 2009a;). Cannibalism enhances biofilm development in Bacillus subtilis . Mol Microbiol74:609–618 [CrossRef][PubMed]
    [Google Scholar]
  43. López D., Fischbach M. A., Chu F., Losick R., Kolter R.. ( 2009b;). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis . Proc Natl Acad Sci U S A106:280–285 [CrossRef][PubMed]
    [Google Scholar]
  44. Maget-Dana R., Ptak M.. ( 1995;). Interactions of surfactin with membrane models. Biophys J68:1937–1943 [CrossRef][PubMed]
    [Google Scholar]
  45. Maget-Dana R., Thimon L., Peypoux F., Ptak M.. ( 1992;). Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie74:1047–1051 [CrossRef][PubMed]
    [Google Scholar]
  46. Mah T.-F. C., O’Toole G. A.. ( 2001;). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39 [CrossRef][PubMed]
    [Google Scholar]
  47. Marr A. K., Gooderham W. J., Hancock R. E. W.. ( 2006;). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol6:468–472 [CrossRef][PubMed]
    [Google Scholar]
  48. Mascher T., Margulis N. G., Wang T. R., Ye R. W., Helmann J. D.. ( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604 [CrossRef][PubMed]
    [Google Scholar]
  49. Midez J. A., Hopfer R. L., López-Berestein G., Mehta R. T.. ( 1989;). Effects of free and liposomal amphotericin B and gramicidin S alone and in combination on potassium leakage from human erythrocytes and Candida albicans . Antimicrob Agents Chemother33:152–155 [CrossRef][PubMed]
    [Google Scholar]
  50. Nakano M. M., Marahiel M. A., Zuber P.. ( 1988;). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis . J Bacteriol170:5662–5668[PubMed]
    [Google Scholar]
  51. Nakano M. M., Magnuson R., Myers A., Curry J., Grossman A. D., Zuber P.. ( 1991;). srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis . J Bacteriol173:1770–1778[PubMed]
    [Google Scholar]
  52. Nandi S., Seddon B.. ( 1978;). Evidence for gramicidin S functioning as a bacterial hormone specifically regulating spore outgrowth in Bacillus brevis Nagano [proceedings]. Biochem Soc Trans6:409–411[PubMed]
    [Google Scholar]
  53. Ohki R., Tateno K., Okada Y., Okajima H., Asai K., Sadaie Y., Murata M., Aiso T.. ( 2003;). A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol185:51–59 [CrossRef][PubMed]
    [Google Scholar]
  54. Peschel A., Sahl H. G.. ( 2006;). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol4:529–536 [CrossRef][PubMed]
    [Google Scholar]
  55. Peypoux F., Bonmatin J. M., Wallach J.. ( 1999;). Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol51:553–563 [CrossRef][PubMed]
    [Google Scholar]
  56. Pietiäinen M., Gardemeister M., Mecklin M., Leskelä S., Sarvas M., Kontinen V. P.. ( 2005;). Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type α factors and two-component signal transduction systems. Microbiology151:1577–1592 [CrossRef][PubMed]
    [Google Scholar]
  57. Podlesek Z., Comino A., Herzog-Velikonja B., Grabnar M.. ( 2000;). The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol Lett188:103–106 [CrossRef][PubMed]
    [Google Scholar]
  58. Price N. P. J., Rooney A. P., Swezey J. L., Perry E., Cohan F. M.. ( 2007;). Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett271:83–89 [CrossRef][PubMed]
    [Google Scholar]
  59. Raaijmakers J. M., De Bruijn I., Nybroe O., Ongena M.. ( 2010;). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev34:1037–1062[PubMed]
    [Google Scholar]
  60. Sarika I., Iquebal M. A., Rai A.. ( 2012;). Biotic stress resistance in agriculture through antimicrobial peptides. Peptides36:322–330 [CrossRef][PubMed]
    [Google Scholar]
  61. Schaeffer P.. ( 1969;). Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev33:48–71[PubMed]
    [Google Scholar]
  62. Servin A. L.. ( 2004;). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev28:405–440 [CrossRef][PubMed]
    [Google Scholar]
  63. Shida O., Takagi H., Kadowaki K., Komagata K.. ( 1996;). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.. Int J Syst Bacteriol46:939–946 [CrossRef][PubMed]
    [Google Scholar]
  64. Sogawa K., Watanabe M., Sato K., Segawa S., Ishii C., Miyabe A., Murata S., Saito T., Nomura F.. ( 2011;). Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem400:1905–1911 [CrossRef][PubMed]
    [Google Scholar]
  65. Staroń A., Finkeisen D. E., Mascher T.. ( 2011;). Peptide antibiotic sensing and detoxification modules of Bacillus subtilis . Antimicrob Agents Chemother55:515–525 [CrossRef][PubMed]
    [Google Scholar]
  66. Stern A., Gibbons W. A., Craig L. C.. ( 1968;). A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A61:734–741 [CrossRef][PubMed]
    [Google Scholar]
  67. Thimon L., Peypoux F., Maget-Dana R., Roux B., Michel G.. ( 1992;). Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis . Biotechnol Appl Biochem16:144–151[PubMed]
    [Google Scholar]
  68. Tosato V., Albertini A. M., Zotti M., Sonda S., Bruschi C. V.. ( 1997;). Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology143:3443–3450 [CrossRef][PubMed]
    [Google Scholar]
  69. Tsukagoshi N., Tamura G., Arima K.. ( 1970;). A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The effects of surfactin on Bacillus megaterium KM. Biochim Biophys Acta196:204–210 [CrossRef][PubMed]
    [Google Scholar]
  70. Vater J., Kablitz B., Wilde C., Franke P., Mehta N., Cameotra S. S.. ( 2002;). Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol68:6210–6219 [CrossRef][PubMed]
    [Google Scholar]
  71. Vater J., Wilde C., Kell H.. ( 2009;). In situ detection of the intermediates in the biosynthesis of surfactin, a lipoheptapeptide from Bacillus subtilis OKB 105, by whole-cell cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in combination with mutant analysis. Rapid Commun Mass Spectrom23:1493–1498 [CrossRef][PubMed]
    [Google Scholar]
  72. Vollenbroich D., Mehta N., Zuber P., Vater J., Kamp R. M.. ( 1994;). Analysis of surfactin synthetase subunits in srfA mutants of Bacillus subtilis OKB105. J Bacteriol176:395–400[PubMed]
    [Google Scholar]
  73. Volpon L.. ( 2001;). Ca2+-induced changes of surfactin conformation: a FTIR and circular dichroism study. Biochem Biophys Res Commun367:361–367
    [Google Scholar]
  74. Walsh C. T.. ( 2004;). Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science303:1805–1810 [CrossRef][PubMed]
    [Google Scholar]
  75. Xu K. D., McFeters G. A., Stewart P. S.. ( 2000;). Biofilm resistance to antimicrobial agents. Microbiology146:547–549[PubMed]
    [Google Scholar]
  76. Yeaman M. R., Yount N. Y.. ( 2003;). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev55:27–55 [CrossRef][PubMed]
    [Google Scholar]
  77. Zasloff M.. ( 2002;). Antimicrobial peptides of multicellular organisms. Nature415:389–395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063131-0
Loading
/content/journal/micro/10.1099/mic.0.063131-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error