1887

Abstract

, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by and , respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by , traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by . Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like but different from a functional BrpA or Psr is required for viability in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063032-0
2013-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/493.html?itemId=/content/journal/micro/10.1099/mic.0.063032-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Zeng L., Bélanger M., Rodrigues P. H., Simpson-Haidaris P. J., Akin D., Dunn W. A. Jr, Progulske-Fox A., Burne R. A.. ( 2009;). Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. . Oral Microbiol Immunol 24:, 141–145. [CrossRef][PubMed]
    [Google Scholar]
  2. Ahn S. J., Burne R. A.. ( 2006;). The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. . J Bacteriol 188:, 6877–6888. [CrossRef][PubMed]
    [Google Scholar]
  3. Ahn S. J., Burne R. A.. ( 2007;). Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. . J Bacteriol 189:, 6293–6302. [CrossRef][PubMed]
    [Google Scholar]
  4. Ahn S. J., Wen Z. T., Burne R. A.. ( 2006;). Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. . Infect Immun 74:, 1631–1642. [CrossRef][PubMed]
    [Google Scholar]
  5. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. & other authors ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99:, 14434–14439. [CrossRef][PubMed]
    [Google Scholar]
  6. Bitoun J. P., Nguyen A. H., Fan Y., Burne R. A., Wen Z. T.. ( 2011;). Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. . FEMS Microbiol Lett 320:, 110–117. [CrossRef][PubMed]
    [Google Scholar]
  7. Bitoun J. P., Liao S., Yao X., Ahn S. J., Isoda R., Nguyen A. H., Brady L. J., Burne R. A., Abranches J., Wen Z. T.. ( 2012;). BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. . Appl Environ Microbiol 78:, 2914–2922. [CrossRef][PubMed]
    [Google Scholar]
  8. Bowen W. H., Koo H.. ( 2011;). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. . Caries Res 45:, 69–86. [CrossRef][PubMed]
    [Google Scholar]
  9. Boyd D. A., Cvitkovitch D. G., Bleiweis A. S., Kiriukhin M. Y., Debabov D. V., Neuhaus F. C., Hamilton I. R.. ( 2000;). Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity. . J Bacteriol 182:, 6055–6065. [CrossRef][PubMed]
    [Google Scholar]
  10. Burne R. A.. ( 1998;). Oral streptococci... products of their environment. . J Dent Res 77:, 445–452. [CrossRef][PubMed]
    [Google Scholar]
  11. Chatfield C. H., Koo H., Quivey R. G. Jr. ( 2005;). The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. . Microbiology 151:, 625–631. [CrossRef][PubMed]
    [Google Scholar]
  12. Cieslewicz M. J., Kasper D. L., Wang Y., Wessels M. R.. ( 2001;). Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. . J Biol Chem 276:, 139–146. [CrossRef][PubMed]
    [Google Scholar]
  13. D’Ulisse V., Fagioli M., Ghelardini P., Paolozzi L.. ( 2007;). Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. . Microbiology 153:, 124–138. [CrossRef][PubMed]
    [Google Scholar]
  14. Eberhardt A., Hoyland C. N., Vollmer D., Bisle S., Cleverley R. M., Johnsborg O., Håvarstein L. S., Lewis R. J., Vollmer W.. ( 2012;). Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. . Microb Drug Resist 18:, 240–255. [CrossRef][PubMed]
    [Google Scholar]
  15. Goodman S. D., Gao Q.. ( 2000;). Characterization of the gtfB and gtfC promoters from Streptococcus mutans GS-5. . Plasmid 43:, 85–98. [CrossRef][PubMed]
    [Google Scholar]
  16. Hamada S., Slade H. D.. ( 1980;). Biology, immunology, and cariogenicity of Streptococcus mutans. . Microbiol Rev 44:, 331–384.[PubMed]
    [Google Scholar]
  17. Hanson B. R., Lowe B. A., Neely M. N.. ( 2011;). Membrane topology and DNA-binding ability of the streptococcal CpsA protein. . J Bacteriol 193:, 411–420. [CrossRef][PubMed]
    [Google Scholar]
  18. Hanson B. R., Runft D. L., Streeter C., Kumar A., Carion T. W., Neely M. N.. ( 2012;). Functional analysis of the CpsA protein of Streptococcus agalactiae. . J Bacteriol 194:, 1668–1678. [CrossRef][PubMed]
    [Google Scholar]
  19. Hazlett K. R., Michalek S. M., Banas J. A.. ( 1998;). Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase B and C genes. . Infect Immun 66:, 2180–2185.[PubMed]
    [Google Scholar]
  20. Hazlett K. R., Mazurkiewicz J. E., Banas J. A.. ( 1999;). Inactivation of the gbpA gene of Streptococcus mutans alters structural and functional aspects of plaque biofilm which are compensated by recombination of the gtfB and gtfC genes. . Infect Immun 67:, 3909–3914.[PubMed]
    [Google Scholar]
  21. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. ( 2000;). Quantification of biofilm structures by the novel computer program COMSTAT. . Microbiology 146:, 2395–2407.[PubMed]
    [Google Scholar]
  22. Hübscher J., Lüthy L., Berger-Bächi B., Stutzmann Meier P.. ( 2008;). Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family. . BMC Genomics 9:, 617. [CrossRef][PubMed]
    [Google Scholar]
  23. Hübscher J., McCallum N., Sifri C. D., Majcherczyk P. A., Entenza J. M., Heusser R., Berger-Bächi B., Stutzmann Meier P.. ( 2009;). MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus. . FEMS Microbiol Lett 295:, 251–260. [CrossRef][PubMed]
    [Google Scholar]
  24. Johnsborg O., Håvarstein L. S.. ( 2009;). Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. . J Bacteriol 191:, 5859–5864. [CrossRef][PubMed]
    [Google Scholar]
  25. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A.. ( 2010;). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. . J Bacteriol 192:, 2546–2556. [CrossRef][PubMed]
    [Google Scholar]
  26. Kawai Y., Marles-Wright J., Cleverley R. M., Emmins R., Ishikawa S., Kuwano M., Heinz N., Bui N. K., Hoyland C. N.. & other authors ( 2011;). A widespread family of bacterial cell wall assembly proteins. . EMBO J 30:, 4931–4941. [CrossRef][PubMed]
    [Google Scholar]
  27. Koo H., Xiao J., Klein M. I., Jeon J. G.. ( 2010;). Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. . J Bacteriol 192:, 3024–3032. [CrossRef][PubMed]
    [Google Scholar]
  28. Lau P. C. Y., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G.. ( 2002;). PCR ligation mutagenesis in transformable streptococci: application and efficiency. . J Microbiol Methods 49:, 193–205. [CrossRef][PubMed]
    [Google Scholar]
  29. Lazarevic V., Margot P., Soldo B., Karamata D.. ( 1992;). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. . J Gen Microbiol 138:, 1949–1961. [CrossRef][PubMed]
    [Google Scholar]
  30. LeBanc D., Lee L.. ( 1991;). Replication function of pVA380–1. . In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, pp. 235–239. Edited by Dunny G., Cleary P. P., Mckay L. L... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Li Y. H., Tang N., Aspiras M. B., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G.. ( 2002;). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. . J Bacteriol 184:, 2699–2708. [CrossRef][PubMed]
    [Google Scholar]
  32. Li X., Feng H. Q., Pang X. Y., Li H. Y.. ( 2008;). Mesosome formation is accompanied by hydrogen peroxide accumulation in bacteria during the rifampicin effect. . Mol Cell Biochem 311:, 241–247. [CrossRef][PubMed]
    [Google Scholar]
  33. Loo C. Y., Corliss D. A., Ganeshkumar N.. ( 2000;). Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. . J Bacteriol 182:, 1374–1382. [CrossRef][PubMed]
    [Google Scholar]
  34. McBain A. J., Ledder R. G., Sreenivasan P., Gilbert P.. ( 2004;). Selection for high-level resistance by chronic triclosan exposure is not universal. . J Antimicrob Chemother 53:, 772–777. [CrossRef][PubMed]
    [Google Scholar]
  35. Mohammadi T., van Dam V., Sijbrandi R., Vernet T., Zapun A., Bouhss A., Diepeveen-de Bruin M., Nguyen-Distèche M., de Kruijff B., Breukink E.. ( 2011;). Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. . EMBO J 30:, 1425–1432. [CrossRef][PubMed]
    [Google Scholar]
  36. Nobbs A. H., Lamont R. J., Jenkinson H. F.. ( 2009;). Streptococcus adherence and colonization. . Microbiol Mol Biol Rev 73:, 407–450. [CrossRef][PubMed]
    [Google Scholar]
  37. Over B., Heusser R., McCallum N., Schulthess B., Kupferschmied P., Gaiani J. M., Sifri C. D., Berger-Bächi B., Stutzmann Meier P.. ( 2011;). LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. . FEMS Microbiol Lett 320:, 142–151. [CrossRef][PubMed]
    [Google Scholar]
  38. Rossi J., Bischoff M., Wada A., Berger-Bächi B.. ( 2003;). MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation. . Antimicrob Agents Chemother 47:, 2558–2564. [CrossRef][PubMed]
    [Google Scholar]
  39. Santhana Raj L., Hing H. L., Baharudin O., Teh Hamidah Z., Aida Suhana R., Nor Asiha C. P., Vimala B., Paramsarvaran S., Sumarni G., Hanjeet K.. ( 2007;). Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. . Trop Biomed 24:, 105–109.[PubMed]
    [Google Scholar]
  40. Senadheera M. D., Lee A. W., Hung D. C., Spatafora G. A., Goodman S. D., Cvitkovitch D. G.. ( 2007;). The Streptococcus mutans vicX gene product modulates gtfB/C expression, biofilm formation, genetic competence, and oxidative stress tolerance. . J Bacteriol 189:, 1451–1458. [CrossRef][PubMed]
    [Google Scholar]
  41. Shippy D. C., Heintz J. A., Albrecht R. M., Eakley N. M., Chopra A. K., Fadl A. A.. ( 2012;). Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica Serovar Typhimurium. . Arch Microbiol 194:, 405–412. [CrossRef][PubMed]
    [Google Scholar]
  42. Smorawinska M., Kuramitsu H. K.. ( 1995;). Primer extension analysis of Streptococcus mutans promoter structures. . Oral Microbiol Immunol 10:, 188–192. [CrossRef][PubMed]
    [Google Scholar]
  43. Steidl R., Pearson S., Stephenson R. E., Ledala N., Sitthisak S., Wilkinson B. J., Jayaswal R. K.. ( 2008;). Staphylococcus aureus cell wall stress stimulon gene-lacZ fusion strains: potential for use in screening for cell wall-active antimicrobials. . Antimicrob Agents Chemother 52:, 2923–2925. [CrossRef][PubMed]
    [Google Scholar]
  44. Suntharalingam P., Senadheera M. D., Mair R. W., Lévesque C. M., Cvitkovitch D. G.. ( 2009;). The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. . J Bacteriol 191:, 2973–2984. [CrossRef][PubMed]
    [Google Scholar]
  45. von Meyenburg K., Jørgensen B. B., Nielsen J., Hansen F. G.. ( 1982;). Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. . Mol Gen Genet 188:, 240–248. [CrossRef][PubMed]
    [Google Scholar]
  46. Wen Z. T., Burne R. A.. ( 2002;). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. . Appl Environ Microbiol 68:, 1196–1203. [CrossRef][PubMed]
    [Google Scholar]
  47. Wen Z. T., Burne R. A.. ( 2004;). LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. . J Bacteriol 186:, 2682–2691. [CrossRef][PubMed]
    [Google Scholar]
  48. Wen Z. T., Suntharaligham P., Cvitkovitch D. G., Burne R. A.. ( 2005;). Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. . Infect Immun 73:, 219–225. [CrossRef][PubMed]
    [Google Scholar]
  49. Wen Z. T., Baker H. V., Burne R. A.. ( 2006;). Influence of BrpA on critical virulence attributes of Streptococcus mutans. . J Bacteriol 188:, 2983–2992. [CrossRef][PubMed]
    [Google Scholar]
  50. Yamashita Y., Shibata Y., Nakano Y., Tsuda H., Kido N., Ohta M., Koga T.. ( 1999;). A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans. . J Bacteriol 181:, 6556–6559.[PubMed]
    [Google Scholar]
  51. Yoshida A., Kuramitsu H. K.. ( 2002;). Multiple Streptococcus mutans genes are involved in biofilm formation. . Appl Environ Microbiol 68:, 6283–6291. [CrossRef][PubMed]
    [Google Scholar]
  52. Zeng L., Wen Z. T., Burne R. A.. ( 2006;). A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. . Mol Microbiol 62:, 187–200. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063032-0
Loading
/content/journal/micro/10.1099/mic.0.063032-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error