1887

Abstract

open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the strain had increased cytoplasmic nickel levels. Transcription of (putative inner membrane Ni transport system) and (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the promoter (P), but not to the urease or the hydrogenase promoter; NikR-P binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nor the -- were under the control of the NikR regulator, in contrast with their homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in , without direct regulation of the Ni-enzyme genes (the latter is the case for ). Finally, the strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062976-0
2013-01-01
2021-06-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/136.html?itemId=/content/journal/micro/10.1099/mic.0.062976-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C.& other authors ( 1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180 [View Article][PubMed]
    [Google Scholar]
  2. Beckwith C. S., McGee D. J., Mobley H. L., Riley L. K.( 2001). Cloning, expression, and catalytic activity of Helicobacter hepaticus urease. Infect Immun 69:5914–5920 [View Article][PubMed]
    [Google Scholar]
  3. Belzer C., Stoof J., Beckwith C. S., Kuipers E. J., Kusters J. G., van Vliet A. H.( 2005). Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology 151:3989–3995 [View Article][PubMed]
    [Google Scholar]
  4. Belzer C., Stoof J., van Vliet A. H. M.( 2007a). Metal-responsive gene regulation and metal transport in Helicobacter species. Biometals 20:417–429 [View Article][PubMed]
    [Google Scholar]
  5. Belzer C., van Schendel B. A., Kuipers E. J., Kusters J. G., van Vliet A. H.( 2007b). Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur. Infect Immun 75:745–752 [View Article][PubMed]
    [Google Scholar]
  6. Benanti E. L., Chivers P. T.( 2007). The N-terminal arm of the Helicobacter pylori Ni2+-dependent transcription factor NikR is required for specific DNA binding. J Biol Chem 282:20365–20375 [View Article][PubMed]
    [Google Scholar]
  7. Benanti E. L., Chivers P. T.( 2010). Geobacter uraniireducens NikR displays a DNA binding mode distinct from other members of the NikR family. J Bacteriol 192:4327–4336 [View Article][PubMed]
    [Google Scholar]
  8. Benoit S. L., Maier R. J.( 2008). Hydrogen and nickel metabolism in helicobacter species. Ann N Y Acad Sci 1125:242–251 [View Article][PubMed]
    [Google Scholar]
  9. Benoit S. L., Zbell A. L., Maier R. J.( 2007). Nickel enzyme maturation in Helicobacter hepaticus: roles of accessory proteins in hydrogenase and urease activities. Microbiology 153:3748–3756 [View Article][PubMed]
    [Google Scholar]
  10. Bloom S. L., Zamble D. B.( 2004). Metal-selective DNA-binding response of Escherichia coli NikR. Biochemistry 43:10029–10038 [View Article][PubMed]
    [Google Scholar]
  11. Chen Y. Y., Burne R. A.( 2003). Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I. J Bacteriol 185:6773–6779 [View Article][PubMed]
    [Google Scholar]
  12. Chivers P. T., Sauer R. T.( 1999). NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci 8:2494–2500 [View Article][PubMed]
    [Google Scholar]
  13. Chivers P. T., Sauer R. T.( 2000). Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem 275:19735–19741 [View Article][PubMed]
    [Google Scholar]
  14. Chivers P. T., Sauer R. T.( 2002). NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148 [View Article][PubMed]
    [Google Scholar]
  15. Contreras M., Thiberge J. M., Mandrand-Berthelot M. A., Labigne A.( 2003). Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol 49:947–963 [View Article][PubMed]
    [Google Scholar]
  16. Danielli A., Scarlato V.( 2010). Regulatory circuits in Helicobacter pylori network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev 34:738–752[PubMed]
    [Google Scholar]
  17. Davis G. S., Flannery E. L., Mobley H. L.( 2006). Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. Infect Immun 74:6811–6820 [View Article][PubMed]
    [Google Scholar]
  18. De Pina K., Desjardin V., Mandrand-Berthelot M. A., Giordano G., Wu L. F.( 1999). Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674[PubMed]
    [Google Scholar]
  19. Delany I., Ieva R., Soragni A., Hilleringmann M., Rappuoli R., Scarlato V.( 2005). In vitro analysis of protein-operator interactions of the NikR and fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J Bacteriol 187:7703–7715 [View Article][PubMed]
    [Google Scholar]
  20. Dosanjh N. S., Michel S. L.( 2006). Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol 10:123–130 [View Article][PubMed]
    [Google Scholar]
  21. Dosanjh N. S., Hammerbacher N. A., Michel S. L.( 2007). Characterization of the Helicobacter pylori NikR-P(ureA) DNA interaction: metal ion requirements and sequence specificity. Biochemistry 46:2520–2529 [View Article][PubMed]
    [Google Scholar]
  22. Dosanjh N. S., West A. L., Michel S. L.( 2009). Helicobacter pylori NikR’s interaction with DNA: a two-tiered mode of recognition. Biochemistry 48:527–536 [View Article][PubMed]
    [Google Scholar]
  23. Eitinger T., Mandrand-Berthelot M. A.( 2000). Nickel transport systems in microorganisms. Arch Microbiol 173:1–9 [View Article][PubMed]
    [Google Scholar]
  24. Eppinger M., Baar C., Linz B., Raddatz G., Lanz C., Keller H., Morelli G., Gressmann H., Achtman M., Schuster S. C.( 2006). Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2:e120 [View Article][PubMed]
    [Google Scholar]
  25. Ernst F. D., Stoof J., Horrevoets W. M., Kuipers E. J., Kusters J. G., van Vliet A. H.( 2006). NikR mediates nickel-responsive transcriptional repression of the Helicobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). Infect Immun 74:6821–6828 [View Article][PubMed]
    [Google Scholar]
  26. Evans S. E., Michel S. L.( 2012). Dissecting the role of DNA sequence in Helicobacter pylori NikR/DNA recognition. Dalton Trans 41:7946–7951 [View Article][PubMed]
    [Google Scholar]
  27. Ge R., Watt R. M., Sun X., Tanner J. A., He Q. Y., Huang J. D., Sun H.( 2006). Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J 393:285–293 [View Article][PubMed]
    [Google Scholar]
  28. Ge Z., Lee A., Whary M. T., Rogers A. B., Maurer K. J., Taylor N. S., Schauer D. B., Fox J. G.( 2008). Helicobacter hepaticus urease is not required for intestinal colonization but promotes hepatic inflammation in male A/JCr mice. Microb Pathog 45:18–24 [View Article][PubMed]
    [Google Scholar]
  29. Hughes K. T., Ladika D., Roth J. R., Olivera B. M.( 1983). An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J Bacteriol 155:213–221[PubMed]
    [Google Scholar]
  30. Maier R. J., Fu C., Gilbert J., Moshiri F., Olson J., Plaut A. G.( 1996). Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol Lett 141:71–76 [View Article][PubMed]
    [Google Scholar]
  31. Mehta N. S., Benoit S., Mysore J. V., Sousa R. S., Maier R. J.( 2005). Helicobacter hepaticus hydrogenase mutants are deficient in hydrogen-supported amino acid uptake and in causing liver lesions in A/J mice. Infect Immun 73:5311–5318 [View Article][PubMed]
    [Google Scholar]
  32. Mehta N. S., Benoit S. L., Mysore J., Maier R. J.( 2007). In vitro and in vivo characterization of alkyl hydroperoxide reductase mutant strains of Helicobacter hepaticus. Biochim Biophys Acta 1770:257–265 [View Article][PubMed]
    [Google Scholar]
  33. Mobley H. L., Garner R. M., Bauerfeind P.( 1995). Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol 16:97–109 [View Article][PubMed]
    [Google Scholar]
  34. Mulrooney S. B., Hausinger R. P.( 2003). Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261 [View Article][PubMed]
    [Google Scholar]
  35. Oh J. D., Kling-Bäckhed H., Giannakis M., Xu J., Fulton R. S., Fulton L. A., Cordum H. S., Wang C., Elliott G.& other authors ( 2006). The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A 103:9999–10004 [View Article][PubMed]
    [Google Scholar]
  36. Romagnoli S., Agriesti F., Scarlato V.( 2011). In vivo recognition of the fecA3 target promoter by Helicobacter pylori NikR. J Bacteriol 193:1131–1141 [View Article][PubMed]
    [Google Scholar]
  37. Schauer K., Gouget B., Carrière M., Labigne A., de Reuse H.( 2007). Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 63:1054–1068 [View Article][PubMed]
    [Google Scholar]
  38. Schauer K., Muller C., Carrière M., Labigne A., Cavazza C., De Reuse H.( 2010). The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol 192:1231–1237 [View Article][PubMed]
    [Google Scholar]
  39. Schreiter E. R., Sintchak M. D., Guo Y., Chivers P. T., Sauer R. T., Drennan C. L.( 2003). Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799 [View Article][PubMed]
    [Google Scholar]
  40. Seshadri S., Benoit S. L., Maier R. J.( 2007). Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol 189:4120–4126 [View Article][PubMed]
    [Google Scholar]
  41. Stähler F. N., Odenbreit S., Haas R., Wilrich J., van Vliet A. H. M., Kusters J. G., Kist M., Bereswill S.( 2006). The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74:3845–3852 [View Article][PubMed]
    [Google Scholar]
  42. Stoof J., Kuipers E. J., Klaver G., van Vliet A. H.( 2010a). An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. Infect Immun 78:4261–4267 [View Article][PubMed]
    [Google Scholar]
  43. Stoof J., Kuipers E. J., van Vliet A. H. M.( 2010b). Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. Biometals 23:145–159 [View Article][PubMed]
    [Google Scholar]
  44. Suerbaum S., Josenhans C., Sterzenbach T., Drescher B., Brandt P., Bell M., Droge M., Fartmann B., Fischer H. P.& other authors ( 2003). The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A 100:7901–7906 [View Article][PubMed]
    [Google Scholar]
  45. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S.& other authors ( 1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547 [View Article][PubMed]
    [Google Scholar]
  46. Wang S. C., Li Y., Robinson C. V., Zamble D. B.( 2010). Potassium is critical for the Ni(II)-responsive DNA-binding activity of Escherichia coli NikR. J Am Chem Soc 132:1506–1507 [View Article][PubMed]
    [Google Scholar]
  47. Weatherburn M. W.( 1967). Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974 [View Article]
    [Google Scholar]
  48. West A. L., Evans S. E., González J. M., Carter L. G., Tsuruta H., Pozharski E., Michel S. L.( 2012). Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect. Proc Natl Acad Sci U S A 109:5633–5638 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062976-0
Loading
/content/journal/micro/10.1099/mic.0.062976-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error