1887

Abstract

open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the strain had increased cytoplasmic nickel levels. Transcription of (putative inner membrane Ni transport system) and (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the promoter (P), but not to the urease or the hydrogenase promoter; NikR-P binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nor the -- were under the control of the NikR regulator, in contrast with their homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in , without direct regulation of the Ni-enzyme genes (the latter is the case for ). Finally, the strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062976-0
2013-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/136.html?itemId=/content/journal/micro/10.1099/mic.0.062976-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C.. & other authors ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. . Nature 397:, 176–180. [CrossRef][PubMed]
    [Google Scholar]
  2. Beckwith C. S., McGee D. J., Mobley H. L., Riley L. K.. ( 2001;). Cloning, expression, and catalytic activity of Helicobacter hepaticus urease. . Infect Immun 69:, 5914–5920. [CrossRef][PubMed]
    [Google Scholar]
  3. Belzer C., Stoof J., Beckwith C. S., Kuipers E. J., Kusters J. G., van Vliet A. H.. ( 2005;). Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. . Microbiology 151:, 3989–3995. [CrossRef][PubMed]
    [Google Scholar]
  4. Belzer C., Stoof J., van Vliet A. H. M.. ( 2007a;). Metal-responsive gene regulation and metal transport in Helicobacter species. . Biometals 20:, 417–429. [CrossRef][PubMed]
    [Google Scholar]
  5. Belzer C., van Schendel B. A., Kuipers E. J., Kusters J. G., van Vliet A. H.. ( 2007b;). Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur. . Infect Immun 75:, 745–752. [CrossRef][PubMed]
    [Google Scholar]
  6. Benanti E. L., Chivers P. T.. ( 2007;). The N-terminal arm of the Helicobacter pylori Ni2+-dependent transcription factor NikR is required for specific DNA binding. . J Biol Chem 282:, 20365–20375. [CrossRef][PubMed]
    [Google Scholar]
  7. Benanti E. L., Chivers P. T.. ( 2010;). Geobacter uraniireducens NikR displays a DNA binding mode distinct from other members of the NikR family. . J Bacteriol 192:, 4327–4336. [CrossRef][PubMed]
    [Google Scholar]
  8. Benoit S. L., Maier R. J.. ( 2008;). Hydrogen and nickel metabolism in helicobacter species. . Ann N Y Acad Sci 1125:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  9. Benoit S. L., Zbell A. L., Maier R. J.. ( 2007;). Nickel enzyme maturation in Helicobacter hepaticus: roles of accessory proteins in hydrogenase and urease activities. . Microbiology 153:, 3748–3756. [CrossRef][PubMed]
    [Google Scholar]
  10. Bloom S. L., Zamble D. B.. ( 2004;). Metal-selective DNA-binding response of Escherichia coli NikR. . Biochemistry 43:, 10029–10038. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Y. Y., Burne R. A.. ( 2003;). Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I. . J Bacteriol 185:, 6773–6779. [CrossRef][PubMed]
    [Google Scholar]
  12. Chivers P. T., Sauer R. T.. ( 1999;). NikR is a ribbon-helix-helix DNA-binding protein. . Protein Sci 8:, 2494–2500. [CrossRef][PubMed]
    [Google Scholar]
  13. Chivers P. T., Sauer R. T.. ( 2000;). Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. . J Biol Chem 275:, 19735–19741. [CrossRef][PubMed]
    [Google Scholar]
  14. Chivers P. T., Sauer R. T.. ( 2002;). NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. . Chem Biol 9:, 1141–1148. [CrossRef][PubMed]
    [Google Scholar]
  15. Contreras M., Thiberge J. M., Mandrand-Berthelot M. A., Labigne A.. ( 2003;). Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. . Mol Microbiol 49:, 947–963. [CrossRef][PubMed]
    [Google Scholar]
  16. Danielli A., Scarlato V.. ( 2010;). Regulatory circuits in Helicobacter pylori network motifs and regulators involved in metal-dependent responses. . FEMS Microbiol Rev 34:, 738–752.[PubMed]
    [Google Scholar]
  17. Davis G. S., Flannery E. L., Mobley H. L.. ( 2006;). Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. . Infect Immun 74:, 6811–6820. [CrossRef][PubMed]
    [Google Scholar]
  18. De Pina K., Desjardin V., Mandrand-Berthelot M. A., Giordano G., Wu L. F.. ( 1999;). Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. . J Bacteriol 181:, 670–674.[PubMed]
    [Google Scholar]
  19. Delany I., Ieva R., Soragni A., Hilleringmann M., Rappuoli R., Scarlato V.. ( 2005;). In vitro analysis of protein-operator interactions of the NikR and fur metal-responsive regulators of coregulated genes in Helicobacter pylori. . J Bacteriol 187:, 7703–7715. [CrossRef][PubMed]
    [Google Scholar]
  20. Dosanjh N. S., Michel S. L.. ( 2006;). Microbial nickel metalloregulation: NikRs for nickel ions. . Curr Opin Chem Biol 10:, 123–130. [CrossRef][PubMed]
    [Google Scholar]
  21. Dosanjh N. S., Hammerbacher N. A., Michel S. L.. ( 2007;). Characterization of the Helicobacter pylori NikR-P(ureA) DNA interaction: metal ion requirements and sequence specificity. . Biochemistry 46:, 2520–2529. [CrossRef][PubMed]
    [Google Scholar]
  22. Dosanjh N. S., West A. L., Michel S. L.. ( 2009;). Helicobacter pylori NikR’s interaction with DNA: a two-tiered mode of recognition. . Biochemistry 48:, 527–536. [CrossRef][PubMed]
    [Google Scholar]
  23. Eitinger T., Mandrand-Berthelot M. A.. ( 2000;). Nickel transport systems in microorganisms. . Arch Microbiol 173:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  24. Eppinger M., Baar C., Linz B., Raddatz G., Lanz C., Keller H., Morelli G., Gressmann H., Achtman M., Schuster S. C.. ( 2006;). Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. . PLoS Genet 2:, e120. [CrossRef][PubMed]
    [Google Scholar]
  25. Ernst F. D., Stoof J., Horrevoets W. M., Kuipers E. J., Kusters J. G., van Vliet A. H.. ( 2006;). NikR mediates nickel-responsive transcriptional repression of the Helicobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). . Infect Immun 74:, 6821–6828. [CrossRef][PubMed]
    [Google Scholar]
  26. Evans S. E., Michel S. L.. ( 2012;). Dissecting the role of DNA sequence in Helicobacter pylori NikR/DNA recognition. . Dalton Trans 41:, 7946–7951. [CrossRef][PubMed]
    [Google Scholar]
  27. Ge R., Watt R. M., Sun X., Tanner J. A., He Q. Y., Huang J. D., Sun H.. ( 2006;). Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. . Biochem J 393:, 285–293. [CrossRef][PubMed]
    [Google Scholar]
  28. Ge Z., Lee A., Whary M. T., Rogers A. B., Maurer K. J., Taylor N. S., Schauer D. B., Fox J. G.. ( 2008;). Helicobacter hepaticus urease is not required for intestinal colonization but promotes hepatic inflammation in male A/JCr mice. . Microb Pathog 45:, 18–24. [CrossRef][PubMed]
    [Google Scholar]
  29. Hughes K. T., Ladika D., Roth J. R., Olivera B. M.. ( 1983;). An indispensable gene for NAD biosynthesis in Salmonella typhimurium. . J Bacteriol 155:, 213–221.[PubMed]
    [Google Scholar]
  30. Maier R. J., Fu C., Gilbert J., Moshiri F., Olson J., Plaut A. G.. ( 1996;). Hydrogen uptake hydrogenase in Helicobacter pylori. . FEMS Microbiol Lett 141:, 71–76. [CrossRef][PubMed]
    [Google Scholar]
  31. Mehta N. S., Benoit S., Mysore J. V., Sousa R. S., Maier R. J.. ( 2005;). Helicobacter hepaticus hydrogenase mutants are deficient in hydrogen-supported amino acid uptake and in causing liver lesions in A/J mice. . Infect Immun 73:, 5311–5318. [CrossRef][PubMed]
    [Google Scholar]
  32. Mehta N. S., Benoit S. L., Mysore J., Maier R. J.. ( 2007;). In vitro and in vivo characterization of alkyl hydroperoxide reductase mutant strains of Helicobacter hepaticus. . Biochim Biophys Acta 1770:, 257–265. [CrossRef][PubMed]
    [Google Scholar]
  33. Mobley H. L., Garner R. M., Bauerfeind P.. ( 1995;). Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. . Mol Microbiol 16:, 97–109. [CrossRef][PubMed]
    [Google Scholar]
  34. Mulrooney S. B., Hausinger R. P.. ( 2003;). Nickel uptake and utilization by microorganisms. . FEMS Microbiol Rev 27:, 239–261. [CrossRef][PubMed]
    [Google Scholar]
  35. Oh J. D., Kling-Bäckhed H., Giannakis M., Xu J., Fulton R. S., Fulton L. A., Cordum H. S., Wang C., Elliott G.. & other authors ( 2006;). The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. . Proc Natl Acad Sci U S A 103:, 9999–10004. [CrossRef][PubMed]
    [Google Scholar]
  36. Romagnoli S., Agriesti F., Scarlato V.. ( 2011;). In vivo recognition of the fecA3 target promoter by Helicobacter pylori NikR. . J Bacteriol 193:, 1131–1141. [CrossRef][PubMed]
    [Google Scholar]
  37. Schauer K., Gouget B., Carrière M., Labigne A., de Reuse H.. ( 2007;). Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. . Mol Microbiol 63:, 1054–1068. [CrossRef][PubMed]
    [Google Scholar]
  38. Schauer K., Muller C., Carrière M., Labigne A., Cavazza C., De Reuse H.. ( 2010;). The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. . J Bacteriol 192:, 1231–1237. [CrossRef][PubMed]
    [Google Scholar]
  39. Schreiter E. R., Sintchak M. D., Guo Y., Chivers P. T., Sauer R. T., Drennan C. L.. ( 2003;). Crystal structure of the nickel-responsive transcription factor NikR. . Nat Struct Biol 10:, 794–799. [CrossRef][PubMed]
    [Google Scholar]
  40. Seshadri S., Benoit S. L., Maier R. J.. ( 2007;). Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. . J Bacteriol 189:, 4120–4126. [CrossRef][PubMed]
    [Google Scholar]
  41. Stähler F. N., Odenbreit S., Haas R., Wilrich J., van Vliet A. H. M., Kusters J. G., Kist M., Bereswill S.. ( 2006;). The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. . Infect Immun 74:, 3845–3852. [CrossRef][PubMed]
    [Google Scholar]
  42. Stoof J., Kuipers E. J., Klaver G., van Vliet A. H.. ( 2010a;). An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. . Infect Immun 78:, 4261–4267. [CrossRef][PubMed]
    [Google Scholar]
  43. Stoof J., Kuipers E. J., van Vliet A. H. M.. ( 2010b;). Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. . Biometals 23:, 145–159. [CrossRef][PubMed]
    [Google Scholar]
  44. Suerbaum S., Josenhans C., Sterzenbach T., Drescher B., Brandt P., Bell M., Droge M., Fartmann B., Fischer H. P.. & other authors ( 2003;). The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. . Proc Natl Acad Sci U S A 100:, 7901–7906. [CrossRef][PubMed]
    [Google Scholar]
  45. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S.. & other authors ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. . Nature 388:, 539–547. [CrossRef][PubMed]
    [Google Scholar]
  46. Wang S. C., Li Y., Robinson C. V., Zamble D. B.. ( 2010;). Potassium is critical for the Ni(II)-responsive DNA-binding activity of Escherichia coli NikR. . J Am Chem Soc 132:, 1506–1507. [CrossRef][PubMed]
    [Google Scholar]
  47. Weatherburn M. W.. ( 1967;). Phenol-hypochlorite reaction for determination of ammonia. . Anal Chem 39:, 971–974. [CrossRef]
    [Google Scholar]
  48. West A. L., Evans S. E., González J. M., Carter L. G., Tsuruta H., Pozharski E., Michel S. L.. ( 2012;). Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect. . Proc Natl Acad Sci U S A 109:, 5633–5638. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062976-0
Loading
/content/journal/micro/10.1099/mic.0.062976-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error