1887

Abstract

open reading frame HH0352 was identified as a nickel-responsive regulator NikR. The gene was disrupted by insertion of an erythromycin resistance cassette. The mutant had five- to sixfold higher urease activity and at least twofold greater hydrogenase activity than the wild-type strain. However, the urease apo-protein levels were similar in both the wild-type and the mutant, suggesting the increase in urease activity in the mutant was due to enhanced Ni-maturation of the urease. Compared with the wild-type strain, the strain had increased cytoplasmic nickel levels. Transcription of (putative inner membrane Ni transport system) and (putative outer membrane Ni transporter) was nickel- and NikR-repressed. Electrophoretic mobility shift assays (EMSAs) revealed that purified HhNikR could bind to the promoter (P), but not to the urease or the hydrogenase promoter; NikR-P binding was enhanced in the presence of nickel. Also, qRT-PCR and EMSAs indicated that neither nor the -- were under the control of the NikR regulator, in contrast with their homologues. Taken together, our results suggest that HhNikR modulates urease and hydrogenase activities by repressing the nickel transport/nickel internalization systems in , without direct regulation of the Ni-enzyme genes (the latter is the case for ). Finally, the strain had a two- to threefold lower growth yield than the parent, suggesting that the regulatory protein might play additional roles in the mouse liver pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062976-0
2013-01-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/136.html?itemId=/content/journal/micro/10.1099/mic.0.062976-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C..& other authors ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature397:176–180 [CrossRef][PubMed]
    [Google Scholar]
  2. Beckwith C. S., McGee D. J., Mobley H. L., Riley L. K..( 2001;). Cloning, expression, and catalytic activity of Helicobacter hepaticus urease. Infect Immun69:5914–5920 [CrossRef][PubMed]
    [Google Scholar]
  3. Belzer C., Stoof J., Beckwith C. S., Kuipers E. J., Kusters J. G., van Vliet A. H..( 2005;). Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology151:3989–3995 [CrossRef][PubMed]
    [Google Scholar]
  4. Belzer C., Stoof J., van Vliet A. H. M..( 2007a;). Metal-responsive gene regulation and metal transport in Helicobacter species. Biometals20:417–429 [CrossRef][PubMed]
    [Google Scholar]
  5. Belzer C., van Schendel B. A., Kuipers E. J., Kusters J. G., van Vliet A. H..( 2007b;). Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur. Infect Immun75:745–752 [CrossRef][PubMed]
    [Google Scholar]
  6. Benanti E. L., Chivers P. T..( 2007;). The N-terminal arm of the Helicobacter pylori Ni2+-dependent transcription factor NikR is required for specific DNA binding. J Biol Chem282:20365–20375 [CrossRef][PubMed]
    [Google Scholar]
  7. Benanti E. L., Chivers P. T..( 2010;). Geobacter uraniireducens NikR displays a DNA binding mode distinct from other members of the NikR family. J Bacteriol192:4327–4336 [CrossRef][PubMed]
    [Google Scholar]
  8. Benoit S. L., Maier R. J..( 2008;). Hydrogen and nickel metabolism in helicobacter species. Ann N Y Acad Sci1125:242–251 [CrossRef][PubMed]
    [Google Scholar]
  9. Benoit S. L., Zbell A. L., Maier R. J..( 2007;). Nickel enzyme maturation in Helicobacter hepaticus: roles of accessory proteins in hydrogenase and urease activities. Microbiology153:3748–3756 [CrossRef][PubMed]
    [Google Scholar]
  10. Bloom S. L., Zamble D. B..( 2004;). Metal-selective DNA-binding response of Escherichia coli NikR. Biochemistry43:10029–10038 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Y. Y., Burne R. A..( 2003;). Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I. J Bacteriol185:6773–6779 [CrossRef][PubMed]
    [Google Scholar]
  12. Chivers P. T., Sauer R. T..( 1999;). NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci8:2494–2500 [CrossRef][PubMed]
    [Google Scholar]
  13. Chivers P. T., Sauer R. T..( 2000;). Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem275:19735–19741 [CrossRef][PubMed]
    [Google Scholar]
  14. Chivers P. T., Sauer R. T..( 2002;). NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol9:1141–1148 [CrossRef][PubMed]
    [Google Scholar]
  15. Contreras M., Thiberge J. M., Mandrand-Berthelot M. A., Labigne A..( 2003;). Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol49:947–963 [CrossRef][PubMed]
    [Google Scholar]
  16. Danielli A., Scarlato V..( 2010;). Regulatory circuits in Helicobacter pylori network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev34:738–752[PubMed]
    [Google Scholar]
  17. Davis G. S., Flannery E. L., Mobley H. L..( 2006;). Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. Infect Immun74:6811–6820 [CrossRef][PubMed]
    [Google Scholar]
  18. De Pina K., Desjardin V., Mandrand-Berthelot M. A., Giordano G., Wu L. F..( 1999;). Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol181:670–674[PubMed]
    [Google Scholar]
  19. Delany I., Ieva R., Soragni A., Hilleringmann M., Rappuoli R., Scarlato V..( 2005;). In vitro analysis of protein-operator interactions of the NikR and fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J Bacteriol187:7703–7715 [CrossRef][PubMed]
    [Google Scholar]
  20. Dosanjh N. S., Michel S. L..( 2006;). Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol10:123–130 [CrossRef][PubMed]
    [Google Scholar]
  21. Dosanjh N. S., Hammerbacher N. A., Michel S. L..( 2007;). Characterization of the Helicobacter pylori NikR-P(ureA) DNA interaction: metal ion requirements and sequence specificity. Biochemistry46:2520–2529 [CrossRef][PubMed]
    [Google Scholar]
  22. Dosanjh N. S., West A. L., Michel S. L..( 2009;). Helicobacter pylori NikR’s interaction with DNA: a two-tiered mode of recognition. Biochemistry48:527–536 [CrossRef][PubMed]
    [Google Scholar]
  23. Eitinger T., Mandrand-Berthelot M. A..( 2000;). Nickel transport systems in microorganisms. Arch Microbiol173:1–9 [CrossRef][PubMed]
    [Google Scholar]
  24. Eppinger M., Baar C., Linz B., Raddatz G., Lanz C., Keller H., Morelli G., Gressmann H., Achtman M., Schuster S. C..( 2006;). Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet2:e120 [CrossRef][PubMed]
    [Google Scholar]
  25. Ernst F. D., Stoof J., Horrevoets W. M., Kuipers E. J., Kusters J. G., van Vliet A. H..( 2006;). NikR mediates nickel-responsive transcriptional repression of the Helicobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). Infect Immun74:6821–6828 [CrossRef][PubMed]
    [Google Scholar]
  26. Evans S. E., Michel S. L..( 2012;). Dissecting the role of DNA sequence in Helicobacter pylori NikR/DNA recognition. Dalton Trans41:7946–7951 [CrossRef][PubMed]
    [Google Scholar]
  27. Ge R., Watt R. M., Sun X., Tanner J. A., He Q. Y., Huang J. D., Sun H..( 2006;). Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J393:285–293 [CrossRef][PubMed]
    [Google Scholar]
  28. Ge Z., Lee A., Whary M. T., Rogers A. B., Maurer K. J., Taylor N. S., Schauer D. B., Fox J. G..( 2008;). Helicobacter hepaticus urease is not required for intestinal colonization but promotes hepatic inflammation in male A/JCr mice. Microb Pathog45:18–24 [CrossRef][PubMed]
    [Google Scholar]
  29. Hughes K. T., Ladika D., Roth J. R., Olivera B. M..( 1983;). An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J Bacteriol155:213–221[PubMed]
    [Google Scholar]
  30. Maier R. J., Fu C., Gilbert J., Moshiri F., Olson J., Plaut A. G..( 1996;). Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol Lett141:71–76 [CrossRef][PubMed]
    [Google Scholar]
  31. Mehta N. S., Benoit S., Mysore J. V., Sousa R. S., Maier R. J..( 2005;). Helicobacter hepaticus hydrogenase mutants are deficient in hydrogen-supported amino acid uptake and in causing liver lesions in A/J mice. Infect Immun73:5311–5318 [CrossRef][PubMed]
    [Google Scholar]
  32. Mehta N. S., Benoit S. L., Mysore J., Maier R. J..( 2007;). In vitro and in vivo characterization of alkyl hydroperoxide reductase mutant strains of Helicobacter hepaticus. Biochim Biophys Acta1770:257–265 [CrossRef][PubMed]
    [Google Scholar]
  33. Mobley H. L., Garner R. M., Bauerfeind P..( 1995;). Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol16:97–109 [CrossRef][PubMed]
    [Google Scholar]
  34. Mulrooney S. B., Hausinger R. P..( 2003;). Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev27:239–261 [CrossRef][PubMed]
    [Google Scholar]
  35. Oh J. D., Kling-Bäckhed H., Giannakis M., Xu J., Fulton R. S., Fulton L. A., Cordum H. S., Wang C., Elliott G..& other authors ( 2006;). The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A103:9999–10004 [CrossRef][PubMed]
    [Google Scholar]
  36. Romagnoli S., Agriesti F., Scarlato V..( 2011;). In vivo recognition of the fecA3 target promoter by Helicobacter pylori NikR. J Bacteriol193:1131–1141 [CrossRef][PubMed]
    [Google Scholar]
  37. Schauer K., Gouget B., Carrière M., Labigne A., de Reuse H..( 2007;). Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol63:1054–1068 [CrossRef][PubMed]
    [Google Scholar]
  38. Schauer K., Muller C., Carrière M., Labigne A., Cavazza C., De Reuse H..( 2010;). The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol192:1231–1237 [CrossRef][PubMed]
    [Google Scholar]
  39. Schreiter E. R., Sintchak M. D., Guo Y., Chivers P. T., Sauer R. T., Drennan C. L..( 2003;). Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol10:794–799 [CrossRef][PubMed]
    [Google Scholar]
  40. Seshadri S., Benoit S. L., Maier R. J..( 2007;). Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol189:4120–4126 [CrossRef][PubMed]
    [Google Scholar]
  41. Stähler F. N., Odenbreit S., Haas R., Wilrich J., van Vliet A. H. M., Kusters J. G., Kist M., Bereswill S..( 2006;). The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun74:3845–3852 [CrossRef][PubMed]
    [Google Scholar]
  42. Stoof J., Kuipers E. J., Klaver G., van Vliet A. H..( 2010a;). An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. Infect Immun78:4261–4267 [CrossRef][PubMed]
    [Google Scholar]
  43. Stoof J., Kuipers E. J., van Vliet A. H. M..( 2010b;). Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. Biometals23:145–159 [CrossRef][PubMed]
    [Google Scholar]
  44. Suerbaum S., Josenhans C., Sterzenbach T., Drescher B., Brandt P., Bell M., Droge M., Fartmann B., Fischer H. P..& other authors ( 2003;). The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A100:7901–7906 [CrossRef][PubMed]
    [Google Scholar]
  45. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S..& other authors ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388:539–547 [CrossRef][PubMed]
    [Google Scholar]
  46. Wang S. C., Li Y., Robinson C. V., Zamble D. B..( 2010;). Potassium is critical for the Ni(II)-responsive DNA-binding activity of Escherichia coli NikR. J Am Chem Soc132:1506–1507 [CrossRef][PubMed]
    [Google Scholar]
  47. Weatherburn M. W..( 1967;). Phenol-hypochlorite reaction for determination of ammonia. Anal Chem39:971–974 [CrossRef]
    [Google Scholar]
  48. West A. L., Evans S. E., González J. M., Carter L. G., Tsuruta H., Pozharski E., Michel S. L..( 2012;). Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect. Proc Natl Acad Sci U S A109:5633–5638 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062976-0
Loading
/content/journal/micro/10.1099/mic.0.062976-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error