1887

Abstract

Lacticin Q (LnqQ) produced by QU 5 is an unmodified linear bacteriocin, which is synthesized without an N-terminal leader peptide. synthesis and expression of LnqQ have revealed the intracellular toxicity of this leaderless peptide, as well as the necessity of a dedicated secretion and self-immunity system of producer cells. Further DNA sequencing and analysis have discovered 11 putative genes at the LnqQ locus. None of the genes showed similarities to any of the bacteriocin biosynthetic genes characterized to date; however, six genes ( ), not including the structural gene (), were highly conserved at the lacticin Z locus (), which is a LnqQ homologue produced by QU 14. ORF2q (ORF2z), the gene of which is located upstream of the structural gene, is a putative transcriptional regulator, whereas ORF6q and ORF7q (ORF6z and ORF7z) form a putative ATP-binding cassette transporter. The ORF3q–5q (ORF3z–5z) are all predicted to be membrane proteins with no clear functions. Co-expression of LnqQ and ORF3q–7q in a heterologous host allowed the extracellular production of LnqQ; additionally, the expression of ORF3q–7q rendered the host cells immune to LnqQ. This self-immunity was facilitated possibly by two means; firstly, by secreting the active LnqQ peptides, thus reducing the intracellular toxicity, and secondly, by protecting the host cells from extracellularly released LnqQ. This is the first report, to our knowledge, that describes intracellular toxicity of a leaderless bacteriocin and provides a rare example of biosynthetic genes that are required for bacteriocin secretion and immunity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062943-0
2012-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2927.html?itemId=/content/journal/micro/10.1099/mic.0.062943-0&mimeType=html&fmt=ahah

References

  1. Aso Y., Nagao J., Koga H., Okuda K., Kanemasa Y., Sashihara T., Nakayama J., Sonomoto K. ( 2004). Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. J Biosci Bioeng 98:429–436[PubMed] [CrossRef]
    [Google Scholar]
  2. Basanta A., Herranz C., Gutiérrez J., Criado R., Hernández P. E., Cintas L. M. ( 2009). Development of bacteriocinogenic strains of Saccharomyces cerevisiae heterologously expressing and secreting the leaderless enterocin L50 peptides L50A and L50B from Enterococcus faecium L50. Appl Environ Microbiol 75:2382–2392 [View Article][PubMed]
    [Google Scholar]
  3. Basanta A., Gómez-Sala B., Sánchez J., Diep D. B., Herranz C., Hernández P. E., Cintas L. M. ( 2010). Use of the yeast Pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from Enterococcus faecium L50. Appl Environ Microbiol 76:3314–3324 [View Article][PubMed]
    [Google Scholar]
  4. Chatterjee C., Paul M., Xie L., van der Donk W. A. ( 2005). Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684 [View Article][PubMed]
    [Google Scholar]
  5. Cintas L. M., Casaus P., Holo H., Hernandez P. E., Nes I. F., Håvarstein L. S. ( 1998). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994[PubMed]
    [Google Scholar]
  6. Cotter P. D., Hill C., Ross R. P. ( 2005). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788 [View Article][PubMed]
    [Google Scholar]
  7. Criado R., Diep D. B., Aakra A., Gutiérrez J., Nes I. F., Hernández P. E., Cintas L. M. ( 2006). Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q production and immunity. Appl Environ Microbiol 72:6653–6666 [View Article][PubMed]
    [Google Scholar]
  8. de Ruyter P. G., Kuipers O. P., de Vos W. M. ( 1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667[PubMed]
    [Google Scholar]
  9. Ennahar S., Asou Y., Zendo T., Sonomoto K., Ishizaki A. ( 2001). Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70:291–301 [View Article][PubMed]
    [Google Scholar]
  10. Floriano B., Ruiz-Barba J. L., Jiménez-Díaz R. ( 1998). Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890[PubMed]
    [Google Scholar]
  11. Fujita K., Ichimasa S., Zendo T., Koga S., Yoneyama F., Nakayama J., Sonomoto K. ( 2007). Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Appl Environ Microbiol 73:2871–2877 [View Article][PubMed]
    [Google Scholar]
  12. Gajic O., Buist G., Kojic M., Topisirovic L., Kuipers O. P., Kok J. ( 2003). Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J Biol Chem 278:34291–34298 [View Article][PubMed]
    [Google Scholar]
  13. Holo H., Nes I. F. ( 1995). Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199[PubMed]
    [Google Scholar]
  14. Hyink O., Balakrishnan M., Tagg J. R. ( 2005). Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett 252:235–241 [View Article][PubMed]
    [Google Scholar]
  15. Iwatani S., Zendo T., Yoneyama F., Nakayama J., Sonomoto K. ( 2007). Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Biosci Biotechnol Biochem 71:1984–1992 [View Article][PubMed]
    [Google Scholar]
  16. Klaenhammer T. R. ( 1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85[PubMed] [CrossRef]
    [Google Scholar]
  17. Kuipers O. P., de Ruyter P. G. G. A., Kleerebezem M., de Vos W. M. ( 1998). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 [View Article]
    [Google Scholar]
  18. Martín-Platero A. M., Valdivia E., Ruíz-Rodríguez M., Soler J. J., Martín-Vivaldi M., Maqueda M., Martínez-Bueno M. ( 2006). Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl Environ Microbiol 72:4245–4249 [View Article][PubMed]
    [Google Scholar]
  19. Nagao J., Harada Y., Shioya K., Aso Y., Zendo T., Nakayama J., Sonomoto K. ( 2005). Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli . Biochem Biophys Res Commun 336:507–513 [View Article][PubMed]
    [Google Scholar]
  20. Nascimento J. dos S., Coelho M. L., Ceotto H., Potter A., Fleming L. R., Salehian Z., Nes I. F., Bastos M. C. ( 2012). Genes involved in immunity to and secretion of aureocin A53, an atypical class II bacteriocin produced by Staphylococcus aureus A53. J Bacteriol 194:875–883 [View Article][PubMed]
    [Google Scholar]
  21. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. ( 1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128 [View Article][PubMed]
    [Google Scholar]
  22. Netz D. J. A., Sahl H.-G., Marcelino R., dos Santos Nascimento J., de Oliveira S. S., Soares M. B., do Carmo de Freire Bastos M. ( 2001). Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus . J Mol Biol 311:939–949 [View Article][PubMed]
    [Google Scholar]
  23. Netz D. J., Pohl R., Beck-Sickinger A. G., Selmer T., Pierik A. J., Bastos M. C., Sahl H. G. ( 2002). Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus . J Mol Biol 319:745–756 [View Article][PubMed]
    [Google Scholar]
  24. Ochman H., Gerber A. S., Hartl D. L. ( 1988). Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623[PubMed]
    [Google Scholar]
  25. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sánchez-Hidalgo M., Maqueda M., Gálvez A., Abriouel H., Valdivia E., Martínez-Bueno M. ( 2003). The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 69:1633–1641 [View Article][PubMed]
    [Google Scholar]
  27. Sandiford S., Upton M. ( 2012). Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrob Agents Chemother 56:1539–1547 [View Article][PubMed]
    [Google Scholar]
  28. Shioya K., Harada Y., Nagao J., Nakayama J., Sonomoto K. ( 2010). Characterization of modification enzyme NukM and engineering of a novel thioether bridge in lantibiotic nukacin ISK-1. Appl Microbiol Biotechnol 86:891–899 [View Article][PubMed]
    [Google Scholar]
  29. van de Guchte M., van der Vossen J. M., Kok J., Venema G. ( 1989). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis . Appl Environ Microbiol 55:224–228[PubMed]
    [Google Scholar]
  30. Walker J. E., Saraste M., Runswick M. J., Gay N. J. ( 1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951[PubMed]
    [Google Scholar]
  31. Yamamoto Y., Togawa Y., Shimosaka M., Okazaki M. ( 2003). Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746–5753 [View Article][PubMed]
    [Google Scholar]
  32. Yoneyama F., Imura Y., Ichimasa S., Fujita K., Zendo T., Nakayama J., Matsuzaki K., Sonomoto K. ( 2009a). Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Appl Environ Microbiol 75:538–541 [View Article][PubMed]
    [Google Scholar]
  33. Yoneyama F., Imura Y., Ohno K., Zendo T., Nakayama J., Matsuzaki K., Sonomoto K. ( 2009b). Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53:3211–3217 [View Article][PubMed]
    [Google Scholar]
  34. Zendo T., Nakayama J., Fujita K., Sonomoto K. ( 2008). Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. J Appl Microbiol 104:499–507[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062943-0
Loading
/content/journal/micro/10.1099/mic.0.062943-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error