1887

Abstract

The Gram-positive human pathogen possesses an unusually high number of gene clusters specific for carbohydrate utilization. This provides it with the ability to use a wide array of sugars, which may aid during infection and survival in different environmental conditions present in the host. In this study, the regulatory mechanism of transcription of a gene cluster, , putatively encoding a cellobiose/lactose-specific phosphotransferase system is investigated. We demonstrate that this gene cluster is transcribed as one transcriptional unit directed by the promoter of the gene. Upstream of , a gene was identified encoding a ROK-family transcriptional regulator (RokA: SPD0423). DNA microarray and transcriptional reporter analyses with a mutant revealed that RokA acts as a transcriptional repressor of the operon. Furthermore, we identified a 25 bp AT-rich DNA operator site (5′-TATATTTAATTTATAAAAAATAAAA-3′) in the promoter region of , which was validated by promoter truncation studies, DNase I footprinting and electrophoretic mobility-shift assays. We tested a large range of different sugars for their effect on the expression of the operon, but only moderate variation in expression was observed in the conditions applied. Therefore, a co-factor for RokA-mediated transcriptional control could not be identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062919-0
2012-12-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2917.html?itemId=/content/journal/micro/10.1099/mic.0.062919-0&mimeType=html&fmt=ahah

References

  1. Albano M., Smits W. K., Ho L. T., Kraigher B., Mandic-Mulec I., Kuipers O. P., Dubnau D.. ( 2005;). The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol187:2010–2019 [CrossRef][PubMed]
    [Google Scholar]
  2. Avery O. T., MacLeod C. M., McCarty M.. ( 1995;). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol Med1:344–365[PubMed]
    [Google Scholar]
  3. Baerends R. J. S., Smits W. K., de Jong A., Hamoen L. W., Kok J., Kuipers O. P.. ( 2004;). Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol5:R37 [CrossRef][PubMed]
    [Google Scholar]
  4. Bidossi A., Mulas L., Decorosi F., Colomba L., Ricci S., Pozzi G., Deutscher J., Viti C., Oggioni M. R.. ( 2012;). A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS ONE7:e33320 [CrossRef][PubMed]
    [Google Scholar]
  5. Bogaert D., De Groot R., Hermans P. W.. ( 2004;). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis4:144–154 [CrossRef][PubMed]
    [Google Scholar]
  6. Buckwalter C. M., King S. J.. ( 2012;). Pneumococcal carbohydrate transport: food for thought. Trends Microbiol [CrossRef][PubMed]
    [Google Scholar]
  7. Carvalho S. M., Kloosterman T. G., Kuipers O. P., Neves A. R.. ( 2011;). CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae. PLoS ONE6:e26707 [CrossRef][PubMed]
    [Google Scholar]
  8. Chapuy-Regaud S., Ogunniyi A. D., Diallo N., Huet Y., Desnottes J. F., Paton J. C., Escaich S., Trombe M. C.. ( 2003;). RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun71:2615–2625 [CrossRef][PubMed]
    [Google Scholar]
  9. Conejo M. S., Thompson S. M., Miller B. G.. ( 2010;). Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family. J Mol Evol70:545–556 [CrossRef][PubMed]
    [Google Scholar]
  10. de Prost N., Saumon G.. ( 2007;). Glucose transport in the lung and its role in liquid movement. Respir Physiol Neurobiol159:331–337 [CrossRef][PubMed]
    [Google Scholar]
  11. de Ruyter P. G., Kuipers O. P., Beerthuyzen M. M., van Alen-Boerrigter I., de Vos W. M.. ( 1996;). Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol178:3434–3439[PubMed]
    [Google Scholar]
  12. Decker K., Plumbridge J., Boos W.. ( 1998;). Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol27:381–390 [CrossRef][PubMed]
    [Google Scholar]
  13. den Hengst C. D., van Hijum S. A. F. T., Geurts J. M., Nauta A., Kok J., Kuipers O. P.. ( 2005a;). The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem280:34332–34342 [CrossRef][PubMed]
    [Google Scholar]
  14. den Hengst C. D., Curley P., Larsen R., Buist G., Nauta A., van Sinderen D., Kuipers O. P., Kok J.. ( 2005b;). Probing direct interactions between CodY and the oppD promoter of Lactococcus lactis. J Bacteriol187:512–521 [CrossRef][PubMed]
    [Google Scholar]
  15. Dubeau M. P., Poulin-Laprade D., Ghinet M. G., Brzezinski R.. ( 2011;). Properties of CsnR, the transcriptional repressor of the chitosanase gene, csnA, of Streptomyces lividans. J Bacteriol193:2441–2450 [CrossRef][PubMed]
    [Google Scholar]
  16. Görke B., Stülke J.. ( 2008;). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol6:613–624 [CrossRef][PubMed]
    [Google Scholar]
  17. Gough H., Luke G. A., Beeley J. A., Geddes D. A.. ( 1996;). Human salivary glucose analysis by high-performance ion-exchange chromatography and pulsed amperometric detection. Arch Oral Biol41:141–145 [CrossRef][PubMed]
    [Google Scholar]
  18. Gu Y., Ding Y., Ren C., Sun Z., Rodionov D. A., Zhang W., Yang S., Yang C., Jiang W.. ( 2010;). Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics11:255 [CrossRef][PubMed]
    [Google Scholar]
  19. Halfmann A., Hakenbeck R., Brückner R.. ( 2007;). A new integrative reporter plasmid for Streptococcus pneumoniae. FEMS Microbiol Lett268:217–224 [CrossRef][PubMed]
    [Google Scholar]
  20. Israelsen H., Madsen S. M., Vrang A., Hansen E. B., Johansen E.. ( 1995;). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol61:2540–2547[PubMed]
    [Google Scholar]
  21. Iyer R., Camilli A.. ( 2007;). Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol Microbiol66:1–13 [CrossRef][PubMed]
    [Google Scholar]
  22. Iyer R., Baliga N. S., Camilli A.. ( 2005;). Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol187:8340–8349 [CrossRef][PubMed]
    [Google Scholar]
  23. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W.. ( 2008;). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol6:288–301 [CrossRef][PubMed]
    [Google Scholar]
  24. Kimata K., Inada T., Tagami H., Aiba H.. ( 1998;). A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol29:1509–1519 [CrossRef][PubMed]
    [Google Scholar]
  25. Kloosterman T. G., Bijlsma J. J. E., Kok J., Kuipers O. P.. ( 2006;). To have neighbour’s fare: extending the molecular toolbox for Streptococcus pneumoniae. Microbiology152:351–359 [CrossRef][PubMed]
    [Google Scholar]
  26. Kloosterman T. G., van der Kooi-Pol M. M., Bijlsma J. J., Kuipers O. P.. ( 2007;). The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol Microbiol65:1049–1063 [CrossRef][PubMed]
    [Google Scholar]
  27. Kloosterman T. G., Witwicki R. M., van der Kooi-Pol M. M., Bijlsma J. J., Kuipers O. P.. ( 2008;). Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol190:5382–5393 [CrossRef][PubMed]
    [Google Scholar]
  28. Kreuzer P., Gärtner D., Allmansberger R., Hillen W.. ( 1989;). Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol171:3840–3845[PubMed]
    [Google Scholar]
  29. Kuipers O. P., de Ruyter P. G. G. A., Kleerebezem M., de Vos W. M.. ( 1998;). Quorum sensing controlled gene expression in lactic acid bacteria. J Biotechnol64:15–21 [CrossRef]
    [Google Scholar]
  30. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E.. ( 2007;). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol189:38–51 [CrossRef][PubMed]
    [Google Scholar]
  31. Marion C., Aten A. E., Woodiga S. A., King S. J.. ( 2011a;). Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect Immun79:4193–4200 [CrossRef][PubMed]
    [Google Scholar]
  32. Marion C., Burnaugh A. M., Woodiga S. A., King S. J.. ( 2011b;). Sialic acid transport contributes to pneumococcal colonization. Infect Immun79:1262–1269 [CrossRef][PubMed]
    [Google Scholar]
  33. McAllister L. J., Ogunniyi A. D., Stroeher U. H., Paton J. C.. ( 2012;). Contribution of a genomic accessory region encoding a putative cellobiose phosphotransferase system to virulence of Streptococcus pneumoniae. PLoS ONE7:e32385 [CrossRef][PubMed]
    [Google Scholar]
  34. McKessar S. J., Hakenbeck R.. ( 2007;). The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol189:1342–1350 [CrossRef][PubMed]
    [Google Scholar]
  35. Nieto C., Espinosa M., Puyet A.. ( 1997;). The maltose/maltodextrin regulon of Streptococcus pneumoniae. Differential promoter regulation by the transcriptional repressor MalR. J Biol Chem272:30860–30865 [CrossRef][PubMed]
    [Google Scholar]
  36. Nieto C., Puyet A., Espinosa M.. ( 2001;). MalR-mediated regulation of the Streptococcus pneumoniae malMP operon at promoter PM . Influence of a proximal divergent promoter region and competition between MalR and RNA polymerase proteins. J Biol Chem276:14946–14954 [CrossRef][PubMed]
    [Google Scholar]
  37. Novichkov P. S., Laikova O. N., Novichkova E. S., Gelfand M. S., Arkin A. P., Dubchak I., Rodionov D. A.. ( 2010;). RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res38:database issueD111–D118 [CrossRef][PubMed]
    [Google Scholar]
  38. Plumbridge J. A.. ( 1991;). Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol Microbiol5:2053–2062 [CrossRef][PubMed]
    [Google Scholar]
  39. Plumbridge J.. ( 1995;). Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. EMBO J14:3958–3965[PubMed]
    [Google Scholar]
  40. Plumbridge J., Pellegrini O.. ( 2004;). Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol52:437–449 [CrossRef][PubMed]
    [Google Scholar]
  41. Shafeeq S., Kloosterman T. G., Kuipers O. P.. ( 2011a;). Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. Metallomics3:609–618 [CrossRef][PubMed]
    [Google Scholar]
  42. Shafeeq S., Kloosterman T. G., Kuipers O. P.. ( 2011b;). CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae. Microbiology157:2854–2861 [CrossRef][PubMed]
    [Google Scholar]
  43. Shafeeq S., Yesilkaya H., Kloosterman T. G., Narayanan G., Wandel M., Andrew P. W., Kuipers O. P., Morrissey J. A.. ( 2011c;). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol81:1255–1270 [CrossRef][PubMed]
    [Google Scholar]
  44. Shelburne S. A., Davenport M. T., Keith D. B., Musser J. M.. ( 2008;). The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol16:318–325 [CrossRef][PubMed]
    [Google Scholar]
  45. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  46. Titgemeyer F., Reizer J., Reizer A., Saier M. H. Jr. ( 1994;). Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology140:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  47. Tyx R. E., Roche-Hakansson H., Hakansson A. P.. ( 2011;). Role of dihydrolipoamide dehydrogenase in regulation of raffinose transport in Streptococcus pneumoniae. J Bacteriol193:3512–3524 [CrossRef][PubMed]
    [Google Scholar]
  48. van Hijum S. A. F. T., de Jong A., Baerends R. J. S., Karsens H. A., Kramer N. E., Larsen R., den Hengst C. D., Albers C. J., Kok J., Kuipers O. P.. ( 2005;). A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics6:77 [CrossRef][PubMed]
    [Google Scholar]
  49. Wood D. M., Brennan A. L., Philips B. J., Baker E. H.. ( 2004;). Effect of hyperglycaemia on glucose concentration of human nasal secretions. Clin Sci (Lond)106:527–533 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062919-0
Loading
/content/journal/micro/10.1099/mic.0.062919-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error