1887

Abstract

The Gram-positive human pathogen possesses an unusually high number of gene clusters specific for carbohydrate utilization. This provides it with the ability to use a wide array of sugars, which may aid during infection and survival in different environmental conditions present in the host. In this study, the regulatory mechanism of transcription of a gene cluster, , putatively encoding a cellobiose/lactose-specific phosphotransferase system is investigated. We demonstrate that this gene cluster is transcribed as one transcriptional unit directed by the promoter of the gene. Upstream of , a gene was identified encoding a ROK-family transcriptional regulator (RokA: SPD0423). DNA microarray and transcriptional reporter analyses with a mutant revealed that RokA acts as a transcriptional repressor of the operon. Furthermore, we identified a 25 bp AT-rich DNA operator site (5′-TATATTTAATTTATAAAAAATAAAA-3′) in the promoter region of , which was validated by promoter truncation studies, DNase I footprinting and electrophoretic mobility-shift assays. We tested a large range of different sugars for their effect on the expression of the operon, but only moderate variation in expression was observed in the conditions applied. Therefore, a co-factor for RokA-mediated transcriptional control could not be identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062919-0
2012-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2917.html?itemId=/content/journal/micro/10.1099/mic.0.062919-0&mimeType=html&fmt=ahah

References

  1. Albano M., Smits W. K., Ho L. T., Kraigher B., Mandic-Mulec I., Kuipers O. P., Dubnau D. ( 2005). The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187:2010–2019 [View Article][PubMed]
    [Google Scholar]
  2. Avery O. T., MacLeod C. M., McCarty M. ( 1995). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol Med 1:344–365[PubMed]
    [Google Scholar]
  3. Baerends R. J. S., Smits W. K., de Jong A., Hamoen L. W., Kok J., Kuipers O. P. ( 2004). Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol 5:R37 [View Article][PubMed]
    [Google Scholar]
  4. Bidossi A., Mulas L., Decorosi F., Colomba L., Ricci S., Pozzi G., Deutscher J., Viti C., Oggioni M. R. ( 2012). A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae . PLoS ONE 7:e33320 [View Article][PubMed]
    [Google Scholar]
  5. Bogaert D., De Groot R., Hermans P. W. ( 2004). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154 [View Article][PubMed]
    [Google Scholar]
  6. Buckwalter C. M., King S. J. ( 2012). Pneumococcal carbohydrate transport: food for thought. Trends Microbiol [View Article][PubMed]
    [Google Scholar]
  7. Carvalho S. M., Kloosterman T. G., Kuipers O. P., Neves A. R. ( 2011). CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae . PLoS ONE 6:e26707 [View Article][PubMed]
    [Google Scholar]
  8. Chapuy-Regaud S., Ogunniyi A. D., Diallo N., Huet Y., Desnottes J. F., Paton J. C., Escaich S., Trombe M. C. ( 2003). RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae . Infect Immun 71:2615–2625 [View Article][PubMed]
    [Google Scholar]
  9. Conejo M. S., Thompson S. M., Miller B. G. ( 2010). Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family. J Mol Evol 70:545–556 [View Article][PubMed]
    [Google Scholar]
  10. de Prost N., Saumon G. ( 2007). Glucose transport in the lung and its role in liquid movement. Respir Physiol Neurobiol 159:331–337 [View Article][PubMed]
    [Google Scholar]
  11. de Ruyter P. G., Kuipers O. P., Beerthuyzen M. M., van Alen-Boerrigter I., de Vos W. M. ( 1996). Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis . J Bacteriol 178:3434–3439[PubMed]
    [Google Scholar]
  12. Decker K., Plumbridge J., Boos W. ( 1998). Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 27:381–390 [View Article][PubMed]
    [Google Scholar]
  13. den Hengst C. D., van Hijum S. A. F. T., Geurts J. M., Nauta A., Kok J., Kuipers O. P. ( 2005a). The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem 280:34332–34342 [View Article][PubMed]
    [Google Scholar]
  14. den Hengst C. D., Curley P., Larsen R., Buist G., Nauta A., van Sinderen D., Kuipers O. P., Kok J. ( 2005b). Probing direct interactions between CodY and the oppD promoter of Lactococcus lactis . J Bacteriol 187:512–521 [View Article][PubMed]
    [Google Scholar]
  15. Dubeau M. P., Poulin-Laprade D., Ghinet M. G., Brzezinski R. ( 2011). Properties of CsnR, the transcriptional repressor of the chitosanase gene, csnA, of Streptomyces lividans . J Bacteriol 193:2441–2450 [View Article][PubMed]
    [Google Scholar]
  16. Görke B., Stülke J. ( 2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624 [View Article][PubMed]
    [Google Scholar]
  17. Gough H., Luke G. A., Beeley J. A., Geddes D. A. ( 1996). Human salivary glucose analysis by high-performance ion-exchange chromatography and pulsed amperometric detection. Arch Oral Biol 41:141–145 [View Article][PubMed]
    [Google Scholar]
  18. Gu Y., Ding Y., Ren C., Sun Z., Rodionov D. A., Zhang W., Yang S., Yang C., Jiang W. ( 2010). Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 11:255 [View Article][PubMed]
    [Google Scholar]
  19. Halfmann A., Hakenbeck R., Brückner R. ( 2007). A new integrative reporter plasmid for Streptococcus pneumoniae . FEMS Microbiol Lett 268:217–224 [View Article][PubMed]
    [Google Scholar]
  20. Israelsen H., Madsen S. M., Vrang A., Hansen E. B., Johansen E. ( 1995). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547[PubMed]
    [Google Scholar]
  21. Iyer R., Camilli A. ( 2007). Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae . Mol Microbiol 66:1–13 [View Article][PubMed]
    [Google Scholar]
  22. Iyer R., Baliga N. S., Camilli A. ( 2005). Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae . J Bacteriol 187:8340–8349 [View Article][PubMed]
    [Google Scholar]
  23. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W. ( 2008). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301 [View Article][PubMed]
    [Google Scholar]
  24. Kimata K., Inada T., Tagami H., Aiba H. ( 1998). A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli . Mol Microbiol 29:1509–1519 [View Article][PubMed]
    [Google Scholar]
  25. Kloosterman T. G., Bijlsma J. J. E., Kok J., Kuipers O. P. ( 2006). To have neighbour’s fare: extending the molecular toolbox for Streptococcus pneumoniae . Microbiology 152:351–359 [View Article][PubMed]
    [Google Scholar]
  26. Kloosterman T. G., van der Kooi-Pol M. M., Bijlsma J. J., Kuipers O. P. ( 2007). The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae . Mol Microbiol 65:1049–1063 [View Article][PubMed]
    [Google Scholar]
  27. Kloosterman T. G., Witwicki R. M., van der Kooi-Pol M. M., Bijlsma J. J., Kuipers O. P. ( 2008). Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae . J Bacteriol 190:5382–5393 [View Article][PubMed]
    [Google Scholar]
  28. Kreuzer P., Gärtner D., Allmansberger R., Hillen W. ( 1989). Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol 171:3840–3845[PubMed]
    [Google Scholar]
  29. Kuipers O. P., de Ruyter P. G. G. A., Kleerebezem M., de Vos W. M. ( 1998). Quorum sensing controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 [View Article]
    [Google Scholar]
  30. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E. ( 2007). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38–51 [View Article][PubMed]
    [Google Scholar]
  31. Marion C., Aten A. E., Woodiga S. A., King S. J. ( 2011a). Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae . Infect Immun 79:4193–4200 [View Article][PubMed]
    [Google Scholar]
  32. Marion C., Burnaugh A. M., Woodiga S. A., King S. J. ( 2011b). Sialic acid transport contributes to pneumococcal colonization. Infect Immun 79:1262–1269 [View Article][PubMed]
    [Google Scholar]
  33. McAllister L. J., Ogunniyi A. D., Stroeher U. H., Paton J. C. ( 2012). Contribution of a genomic accessory region encoding a putative cellobiose phosphotransferase system to virulence of Streptococcus pneumoniae . PLoS ONE 7:e32385 [View Article][PubMed]
    [Google Scholar]
  34. McKessar S. J., Hakenbeck R. ( 2007). The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol 189:1342–1350 [View Article][PubMed]
    [Google Scholar]
  35. Nieto C., Espinosa M., Puyet A. ( 1997). The maltose/maltodextrin regulon of Streptococcus pneumoniae. Differential promoter regulation by the transcriptional repressor MalR. J Biol Chem 272:30860–30865 [View Article][PubMed]
    [Google Scholar]
  36. Nieto C., Puyet A., Espinosa M. ( 2001). MalR-mediated regulation of the Streptococcus pneumoniae malMP operon at promoter PM . Influence of a proximal divergent promoter region and competition between MalR and RNA polymerase proteins. J Biol Chem 276:14946–14954 [View Article][PubMed]
    [Google Scholar]
  37. Novichkov P. S., Laikova O. N., Novichkova E. S., Gelfand M. S., Arkin A. P., Dubchak I., Rodionov D. A. ( 2010). RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 38:database issueD111–D118 [View Article][PubMed]
    [Google Scholar]
  38. Plumbridge J. A. ( 1991). Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Mol Microbiol 5:2053–2062 [View Article][PubMed]
    [Google Scholar]
  39. Plumbridge J. ( 1995). Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. EMBO J 14:3958–3965[PubMed]
    [Google Scholar]
  40. Plumbridge J., Pellegrini O. ( 2004). Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52:437–449 [View Article][PubMed]
    [Google Scholar]
  41. Shafeeq S., Kloosterman T. G., Kuipers O. P. ( 2011a). Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. Metallomics 3:609–618 [View Article][PubMed]
    [Google Scholar]
  42. Shafeeq S., Kloosterman T. G., Kuipers O. P. ( 2011b). CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae . Microbiology 157:2854–2861 [View Article][PubMed]
    [Google Scholar]
  43. Shafeeq S., Yesilkaya H., Kloosterman T. G., Narayanan G., Wandel M., Andrew P. W., Kuipers O. P., Morrissey J. A. ( 2011c). The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae . Mol Microbiol 81:1255–1270 [View Article][PubMed]
    [Google Scholar]
  44. Shelburne S. A., Davenport M. T., Keith D. B., Musser J. M. ( 2008). The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16:318–325 [View Article][PubMed]
    [Google Scholar]
  45. Terzaghi B. E., Sandine W. E. ( 1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813[PubMed]
    [Google Scholar]
  46. Titgemeyer F., Reizer J., Reizer A., Saier M. H. Jr ( 1994). Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354 [View Article][PubMed]
    [Google Scholar]
  47. Tyx R. E., Roche-Hakansson H., Hakansson A. P. ( 2011). Role of dihydrolipoamide dehydrogenase in regulation of raffinose transport in Streptococcus pneumoniae. J Bacteriol 193:3512–3524 [View Article][PubMed]
    [Google Scholar]
  48. van Hijum S. A. F. T., de Jong A., Baerends R. J. S., Karsens H. A., Kramer N. E., Larsen R., den Hengst C. D., Albers C. J., Kok J., Kuipers O. P. ( 2005). A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics 6:77 [View Article][PubMed]
    [Google Scholar]
  49. Wood D. M., Brennan A. L., Philips B. J., Baker E. H. ( 2004). Effect of hyperglycaemia on glucose concentration of human nasal secretions. Clin Sci (Lond) 106:527–533 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062919-0
Loading
/content/journal/micro/10.1099/mic.0.062919-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error