1887

Abstract

, a class II transposable element, was characterized in the genome. The transposase is highly similar to plant -like transposases that belong to the newest class II superfamily known as /. Although shares characteristics with -like elements, other characteristics, such as the transposase intron position, the position and direction of the second ORF, and the footprint, indicate that belongs to a novel family of the / superfamily. Southern blot analyses detected 6–12 copies of in C-biotype isolates and a ubiquitous presence among the C- and S-biotypes, as well as a separation in the C-biotype isolates from Bahia State in Brazil in at least two genotypic groups, and a new insertion in the genome of a C-biotype isolate maintained in the laboratory for 6 years. In addition to PCR amplification from a specific insertion site, changes in the hybridization profile after the sexual cycle and detection of transcripts gave further evidence of activity. As an active family in the genome of , elements may contribute to genetic variability in this homothallic fungus. This is the first report of a / transposon in the genome of a phytopathogenic fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062901-0
2013-01-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/112.html?itemId=/content/journal/micro/10.1099/mic.0.062901-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Anaya N., Roncero M. I. G.. ( 1996;). Stress-induced rearrangement of Fusarium retrotransposon sequences. Mol Gen Genet253:89–94 [CrossRef][PubMed]
    [Google Scholar]
  3. Andebrhan T., Furtek D. B.. ( 1994;). Random amplified polymorphic DNA (RAPD) analysis of Crinipellis perniciosa isolates from different hosts. Plant Pathol43:1020–1027 [CrossRef]
    [Google Scholar]
  4. Andebrhan T., Figueira A., Yamada M. M., Cascardo J., Furtek D. B.. ( 1999;). Molecular fingerprinting suggests two primary outbreaks of witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. Eur J Plant Pathol105:167–175[CrossRef]
    [Google Scholar]
  5. Bastos C. N., Evans H. C.. ( 1985;). A new pathotype of Crinipellis perniciosa (Witches’ broom disease) on solanaceous hosts. Plant Pathol34:306–312 [CrossRef]
    [Google Scholar]
  6. Bastos C. N., Andebrhan T., de Almeida L. C.. ( 1988;). Comparação morfológica de isolados de Crinipellis perniciosa . Fitopatol Bras13:202–205
    [Google Scholar]
  7. Benton W. D., Davis R. W.. ( 1977;). Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science196:180–182 [CrossRef][PubMed]
    [Google Scholar]
  8. Bergemann M., Lespinet O., M’Barek S. B., Daboussi M. J., Dufresne M.. ( 2008;). Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps . J Mol Evol67:631–642 [CrossRef][PubMed]
    [Google Scholar]
  9. Daboussi M. J., Capy P.. ( 2003;). Transposable elements in filamentous fungi. Annu Rev Microbiol57:275–299 [CrossRef][PubMed]
    [Google Scholar]
  10. Daboussi M. J., Langin T.. ( 1994;). Transposable elements in the fungal plant pathogen Fusarium oxysporum . Genetica93:49–59 [CrossRef]
    [Google Scholar]
  11. Daboussi M. J., Langin T., Brygoo Y.. ( 1992;). Fot1, a new family of fungal transposable elements. Mol Gen Genet232:12–16 [CrossRef][PubMed]
    [Google Scholar]
  12. de Arruda M. C., Ferreira M. A., Miller R. N., Resende M. L., Felipe M. S.. ( 2003a;). Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts. Mycol Res107:25–37 [CrossRef][PubMed]
    [Google Scholar]
  13. de Arruda M. C., Miller R. N., Ferreira M. A., Felipe M. S.. ( 2003b;). Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprint. Plant Pathol52:236–244 [CrossRef]
    [Google Scholar]
  14. Dobinson K. F., Harris R. E., Hamer J. E.. ( 1993;). Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea . Mol Plant Microbe Interact6:114–126 [CrossRef][PubMed]
    [Google Scholar]
  15. Dufresne M., Hua-Van A., El Wahab H. A., Ben M’Barek S., Vasnier C., Teysset L., Kema G. H. J., Daboussi M. J.. ( 2007;). Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics175:441–452 [CrossRef][PubMed]
    [Google Scholar]
  16. Evans H. C.. ( 1978;). Witches’ broom disease of cocoa (Crinipellis perniciosa) in Ecuador. Ann Appl Biol89:185–192 [CrossRef]
    [Google Scholar]
  17. Felipe M. S. S., Azevedo M. A., Vainstein M. H., Schrank A.. ( 1992;). Biologia molecular de fungos filamentosos: construção de banco genômico e de cDNA. Manual Técnico Piracicaba, SP, Brazil: Escola Superior de Agricultura ‘Luiz de Queiroz’;
    [Google Scholar]
  18. Fleetwood D. J., Scott B., Lane G. A., Tanaka A., Johnson R. D.. ( 2007;). A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol73:2571–2579 [CrossRef][PubMed]
    [Google Scholar]
  19. Fleetwood D. J., Khan A. K., Johnson R. D., Young C. A., Mittal S., Wrenn R. E., Hesse U., Foster S. J., Schardl C. L., Scott B.. ( 2011;). Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. Genome Biol Evol3:1253–1264 [CrossRef][PubMed]
    [Google Scholar]
  20. Gómez-Gómez E., Anaya N., Roncero M. I. G., Hera C.. ( 1999;). Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum . Fungal Genet Biol27:67–76 [CrossRef][PubMed]
    [Google Scholar]
  21. Goodwin T. J., Poulter R. T.. ( 2001;). The DIRS1 group of retrotransposons. Mol Biol Evol18:2067–2082 [CrossRef][PubMed]
    [Google Scholar]
  22. Goodwin T. J., Butler M. I., Poulter R. T.. ( 2003;). Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology149:3099–3109 [CrossRef][PubMed]
    [Google Scholar]
  23. Griffith G. W., Hedger J. N.. ( 1993;). A novel method for producing basidiocarps of the cocoa pathogen Crinipellis perniciosa using a bran-vermiculite medium. Eur J Plant Pathol99:227–230
    [Google Scholar]
  24. Grzebelus D., Yau Y. Y., Simon P. W.. ( 2006;). Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics275:450–459[PubMed][CrossRef]
    [Google Scholar]
  25. Hancock C. N., Zhang F., Wessler S. R.. ( 2010;). Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob DNA1:5 [CrossRef][PubMed]
    [Google Scholar]
  26. He C., Nourse J. P., Irwin J. A. G., Manners J. M., Kelemu S.. ( 1996;). CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides . Mol Gen Genet252:320–331 [CrossRef][PubMed]
    [Google Scholar]
  27. Hedger J. N., Pickering V., Aragundi J.. ( 1987;). Variability of populations of the witches’ broom disease of cocoa (Crinipellis perniciosa). Trans Br Mycol Soc88:533–546 [CrossRef]
    [Google Scholar]
  28. Hua-Van A., Davière J. M., Kaper F., Langin T., Daboussi M. J.. ( 2000;). Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet37:339–347 [CrossRef][PubMed]
    [Google Scholar]
  29. Ignacchiti M. D. C., Santana M. F., Araújo E. F., Queiroz M. V.. ( 2011;). The distribution of a transposase sequence in Moniliophthora perniciosa confirms the occurrence of two genotypes in Bahia, Brazil. Trop Plant Pathol36:276–286 [CrossRef]
    [Google Scholar]
  30. Jiang N., Bao Z., Zhang X., Hirochika H., Eddy S. R., McCouch S. R., Wessler S. R.. ( 2003;). An active DNA transposon family in rice. Nature421:163–167 [CrossRef][PubMed]
    [Google Scholar]
  31. Jurka J., Kapitonov V. V.. ( 2001;). PIFs meet Tourists and Harbingers: a superfamily reunion. Proc Natl Acad Sci U S A98:12315–12316 [CrossRef][PubMed]
    [Google Scholar]
  32. Kaneko I., Tanaka A., Tsuge T.. ( 2000;). REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata . Mol Gen Genet263:625–634 [CrossRef][PubMed]
    [Google Scholar]
  33. Kapitonov V. V., Jurka J.. ( 1999;). Molecular paleontology of transposable elements from Arabidopsis thaliana . Genetica107:27–37 [CrossRef][PubMed]
    [Google Scholar]
  34. Kapitonov V. V., Jurka J.. ( 2004;). Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol23:311–324 [CrossRef][PubMed]
    [Google Scholar]
  35. Keyhani N. O.. ( 2011;). Fungal genomes and beyond. Fungal Genom Biol1:e101 [CrossRef]
    [Google Scholar]
  36. Kito H., Takahashi Y., Sato J., Fukiya S., Sone T., Tomita F.. ( 2003;). Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr Genet42:322–331 [CrossRef][PubMed]
    [Google Scholar]
  37. Langin T., Capy P., Daboussi M. J.. ( 1995;). The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet246:19–28 [CrossRef][PubMed]
    [Google Scholar]
  38. Marchler-Bauer A., Bryant S. H.. ( 2004;). CD-Search: protein domain annotations on the fly. Nucleic Acids Res32:Web Server issueW327–W331 [CrossRef][PubMed]
    [Google Scholar]
  39. Maurer P., Réjasse A., Capy P., Langin T., Riba G.. ( 1997;). Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol Gen Genet256:195–202 [CrossRef][PubMed]
    [Google Scholar]
  40. McClintock B.. ( 1984;). The significance of responses of the genome to challenge. Science226:792–801 [CrossRef][PubMed]
    [Google Scholar]
  41. Mes J. J., Haring M. A., Cornelissen B. J. C.. ( 2000;). Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum . Mol Gen Genet263:271–280 [CrossRef][PubMed]
    [Google Scholar]
  42. Mondego J. M. C., Carazzolle M. F., Costa G. G. L., Formighieri E. F., Parizzi L. P., Rincones J., Cotomacci C., Carraro D. M., Cunha A. F.. & other authors ( 2008;). A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics9:548 [CrossRef][PubMed]
    [Google Scholar]
  43. Nakayashiki H., Nishimoto N., Ikeda K., Tosa Y., Mayama S.. ( 1999;). Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol Gen Genet261:958–966 [CrossRef][PubMed]
    [Google Scholar]
  44. Niella G., Resende M. L., Castro H. A., de Carvalho G. A., Silva L. H. C. P.. ( 1999;). Aperfeiçoamento da metodologia de produção artificial de basidiocarpos de Crinipellis perniciosa . Fitopatol Bras24:523–527
    [Google Scholar]
  45. Ogasawara H., Obata H., Hata Y., Takahashi S., Gomi K.. ( 2009;). Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol46:441–449 [CrossRef][PubMed]
    [Google Scholar]
  46. Okuda M., Ikeda K., Namiki F., Nishi K., Tsuge T.. ( 1998;). Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum . Mol Gen Genet258:599–607 [CrossRef][PubMed]
    [Google Scholar]
  47. Pereira J. L., de Almeida L. C. C., Santos S. M.. ( 1996;). Witches’ broom disease of cocoa in Bahia: attempts at eradication and containment. Crop Prot15:743–752 [CrossRef]
    [Google Scholar]
  48. Pereira J. F., Araújo E. F., Brommonschenkel S. H., Queiroz M. V.. ( 2006;). Elementos transponíveis em fungos fitopatogênicos. Rev Anual Patol Plant14:303–362
    [Google Scholar]
  49. Pereira J. F., Ignacchiti M. D. C., Araújo E. F., Brommonschenkel S. H., Cascardo J. C. M., Pereira G. A. G., Queiroz M. V.. ( 2007;). PCR amplification and sequence analyses of reverse transcriptase-like genes in Crinipellis perniciosa isolates. Fitopatol Bras32:373–380 [CrossRef]
    [Google Scholar]
  50. Ploetz R. C., Schnell R. J., Ying Z. T., Zheng Q., Olano C. T., Motamayor J. C., Johnson E. S.. ( 2005;). Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. Eur J Plant Pathol111:317–326 [CrossRef]
    [Google Scholar]
  51. Pontecorvo G., Roper J. A. L., Hemmons L. M., MacDonald K. D., Bufton A. W. J.. ( 1953;). The genetics of Aspergillus nidulans . Adv Genet5:141–238 [CrossRef][PubMed]
    [Google Scholar]
  52. Rep M., van der Does H. C., Cornelissen B. J.. ( 2005;). Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol42:546–553 [CrossRef][PubMed]
    [Google Scholar]
  53. Rincones J., Meinhardt L. W., Vidal B. C., Pereira G. A. G.. ( 2003;). Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao . Mycol Res107:452–458 [CrossRef][PubMed]
    [Google Scholar]
  54. Rincones J., Mazotti G. D., Griffith G. W., Pomela A., Figueira A., Leal G. A. Jr, Queiroz M. V., Pereira J. F., Azevedo R. A.. & other authors ( 2006;). Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res110:821–832 [CrossRef][PubMed]
    [Google Scholar]
  55. Rincones J., Scarpari L. M., Carazzolle M. F., Mondego J. M. C., Formighieri E. F., Barau J. G., Costa G. G. L., Carraro D. M., Brentani H. P.. & other authors ( 2008;). Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa . Mol Plant Microbe Interact21:891–908 [CrossRef][PubMed]
    [Google Scholar]
  56. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sanger F., Nicklen S., Coulson A. R.. ( 1977;). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  59. Schmidt S. M., Panstruga R.. ( 2011;). Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?. Curr Opin Plant Biol14:392–399 [CrossRef][PubMed]
    [Google Scholar]
  60. Shim W. B., Dunkle L. D.. ( 2005;). Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis . Mycologia97:349–355 [CrossRef][PubMed]
    [Google Scholar]
  61. Shnyreva A. V.. ( 2003;). Transposable elements are the factors involved in various rearrangements and modifications of fungal genomes. Russ J Genet39:505–518 [CrossRef]
    [Google Scholar]
  62. Shull V., Hamer J. E.. ( 1996;). Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genet Biol20:59–69 [CrossRef][PubMed]
    [Google Scholar]
  63. Sinzelle L., Kapitonov V. V., Grzela D. P., Jursch T., Jurka J., Izsvák Z., Ivics Z.. ( 2008;). Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc Natl Acad Sci U S A105:4715–4720 [CrossRef][PubMed]
    [Google Scholar]
  64. Specht C. A., DiRusso C. C., Novotny C. P., Ullrich R. C.. ( 1982;). A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem119:158–163[PubMed][CrossRef]
    [Google Scholar]
  65. Stanke M., Morgenstern B.. ( 2005;). augustus: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res33:Web Server issueW465–W467 [CrossRef][PubMed]
    [Google Scholar]
  66. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  67. Walker E. L., Eggleston W. B., Demopulos D., Kermicle J., Dellaporta S. L.. ( 1997;). Insertions of a novel class of transposable elements with a strong target site preference at the r locus of maize. Genetics146:681–693[PubMed]
    [Google Scholar]
  68. Wessler S. R., Bureau T. E., White S. E.. ( 1995;). LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev5:814–821 [CrossRef][PubMed]
    [Google Scholar]
  69. Wicker T., Sabot F., Hua-Van A., Bennetzen J. L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M.. & other authors ( 2007;). A unified classification system for eukaryotic transposable elements. Nat Rev Genet8:973–982 [CrossRef][PubMed]
    [Google Scholar]
  70. Wöstemeyer J., Kreibich A.. ( 2002;). Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet41:189–198 [CrossRef][PubMed]
    [Google Scholar]
  71. Yang G. J., Zhang F., Hancock C. N., Wessler S. R.. ( 2007;). Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana . Proc Natl Acad Sci U S A104:10962–10967 [CrossRef][PubMed]
    [Google Scholar]
  72. Yeadon P. J., Catcheside D. E.. ( 1995;). Guest: a 98 bp inverted repeat transposable element in Neurospora crassa . Mol Gen Genet247:105–109 [CrossRef][PubMed]
    [Google Scholar]
  73. Zhang X., Feschotte C., Zhang Q., Jiang N., Eggleston W. B., Wessler S. R.. ( 2001;). P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A98:12572–12577 [CrossRef][PubMed]
    [Google Scholar]
  74. Zhang X., Jiang N., Feschotte C., Wessler S. R.. ( 2004;). PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics166:971–986[PubMed][CrossRef]
    [Google Scholar]
  75. Zhou M. B., Lu J.-J., Zhong H., Liu X.-M., Tang D.-Q.. ( 2010;). Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. Plant Sci179:257–266 [CrossRef]
    [Google Scholar]
  76. Zhou M. B., Liu X. M., Tang D. Q.. ( 2012;). PpPIF-1: first isolated full-length PIF-like element from the bamboo Phyllostachys pubescens . Genet Mol Res11:810–820 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062901-0
Loading
/content/journal/micro/10.1099/mic.0.062901-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error