1887

Abstract

, a class II transposable element, was characterized in the genome. The transposase is highly similar to plant -like transposases that belong to the newest class II superfamily known as /. Although shares characteristics with -like elements, other characteristics, such as the transposase intron position, the position and direction of the second ORF, and the footprint, indicate that belongs to a novel family of the / superfamily. Southern blot analyses detected 6–12 copies of in C-biotype isolates and a ubiquitous presence among the C- and S-biotypes, as well as a separation in the C-biotype isolates from Bahia State in Brazil in at least two genotypic groups, and a new insertion in the genome of a C-biotype isolate maintained in the laboratory for 6 years. In addition to PCR amplification from a specific insertion site, changes in the hybridization profile after the sexual cycle and detection of transcripts gave further evidence of activity. As an active family in the genome of , elements may contribute to genetic variability in this homothallic fungus. This is the first report of a / transposon in the genome of a phytopathogenic fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062901-0
2013-01-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/112.html?itemId=/content/journal/micro/10.1099/mic.0.062901-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Anaya N., Roncero M. I. G. ( 1996). Stress-induced rearrangement of Fusarium retrotransposon sequences. Mol Gen Genet 253:89–94 [View Article][PubMed]
    [Google Scholar]
  3. Andebrhan T., Furtek D. B. ( 1994). Random amplified polymorphic DNA (RAPD) analysis of Crinipellis perniciosa isolates from different hosts. Plant Pathol 43:1020–1027 [View Article]
    [Google Scholar]
  4. Andebrhan T., Figueira A., Yamada M. M., Cascardo J., Furtek D. B. ( 1999). Molecular fingerprinting suggests two primary outbreaks of witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. Eur J Plant Pathol 105:167–175 [CrossRef]
    [Google Scholar]
  5. Bastos C. N., Evans H. C. ( 1985). A new pathotype of Crinipellis perniciosa (Witches’ broom disease) on solanaceous hosts. Plant Pathol 34:306–312 [View Article]
    [Google Scholar]
  6. Bastos C. N., Andebrhan T., de Almeida L. C. ( 1988). Comparação morfológica de isolados de Crinipellis perniciosa . Fitopatol Bras 13:202–205
    [Google Scholar]
  7. Benton W. D., Davis R. W. ( 1977). Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science 196:180–182 [View Article][PubMed]
    [Google Scholar]
  8. Bergemann M., Lespinet O., M’Barek S. B., Daboussi M. J., Dufresne M. ( 2008). Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps . J Mol Evol 67:631–642 [View Article][PubMed]
    [Google Scholar]
  9. Daboussi M. J., Capy P. ( 2003). Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299 [View Article][PubMed]
    [Google Scholar]
  10. Daboussi M. J., Langin T. ( 1994). Transposable elements in the fungal plant pathogen Fusarium oxysporum . Genetica 93:49–59 [View Article]
    [Google Scholar]
  11. Daboussi M. J., Langin T., Brygoo Y. ( 1992). Fot1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16 [View Article][PubMed]
    [Google Scholar]
  12. de Arruda M. C., Ferreira M. A., Miller R. N., Resende M. L., Felipe M. S. ( 2003a). Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts. Mycol Res 107:25–37 [View Article][PubMed]
    [Google Scholar]
  13. de Arruda M. C., Miller R. N., Ferreira M. A., Felipe M. S. ( 2003b). Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprint. Plant Pathol 52:236–244 [View Article]
    [Google Scholar]
  14. Dobinson K. F., Harris R. E., Hamer J. E. ( 1993). Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea . Mol Plant Microbe Interact 6:114–126 [View Article][PubMed]
    [Google Scholar]
  15. Dufresne M., Hua-Van A., El Wahab H. A., Ben M’Barek S., Vasnier C., Teysset L., Kema G. H. J., Daboussi M. J. ( 2007). Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics 175:441–452 [View Article][PubMed]
    [Google Scholar]
  16. Evans H. C. ( 1978). Witches’ broom disease of cocoa (Crinipellis perniciosa) in Ecuador. Ann Appl Biol 89:185–192 [View Article]
    [Google Scholar]
  17. Felipe M. S. S., Azevedo M. A., Vainstein M. H., Schrank A. ( 1992). Biologia molecular de fungos filamentosos: construção de banco genômico e de cDNA. Manual Técnico Piracicaba, SP, Brazil: Escola Superior de Agricultura ‘Luiz de Queiroz’;
    [Google Scholar]
  18. Fleetwood D. J., Scott B., Lane G. A., Tanaka A., Johnson R. D. ( 2007). A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 73:2571–2579 [View Article][PubMed]
    [Google Scholar]
  19. Fleetwood D. J., Khan A. K., Johnson R. D., Young C. A., Mittal S., Wrenn R. E., Hesse U., Foster S. J., Schardl C. L., Scott B. ( 2011). Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. Genome Biol Evol 3:1253–1264 [View Article][PubMed]
    [Google Scholar]
  20. Gómez-Gómez E., Anaya N., Roncero M. I. G., Hera C. ( 1999). Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum . Fungal Genet Biol 27:67–76 [View Article][PubMed]
    [Google Scholar]
  21. Goodwin T. J., Poulter R. T. ( 2001). The DIRS1 group of retrotransposons. Mol Biol Evol 18:2067–2082 [View Article][PubMed]
    [Google Scholar]
  22. Goodwin T. J., Butler M. I., Poulter R. T. ( 2003). Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology 149:3099–3109 [View Article][PubMed]
    [Google Scholar]
  23. Griffith G. W., Hedger J. N. ( 1993). A novel method for producing basidiocarps of the cocoa pathogen Crinipellis perniciosa using a bran-vermiculite medium. Eur J Plant Pathol 99:227–230
    [Google Scholar]
  24. Grzebelus D., Yau Y. Y., Simon P. W. ( 2006). Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics 275:450–459[PubMed] [CrossRef]
    [Google Scholar]
  25. Hancock C. N., Zhang F., Wessler S. R. ( 2010). Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob DNA 1:5 [View Article][PubMed]
    [Google Scholar]
  26. He C., Nourse J. P., Irwin J. A. G., Manners J. M., Kelemu S. ( 1996). CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides . Mol Gen Genet 252:320–331 [View Article][PubMed]
    [Google Scholar]
  27. Hedger J. N., Pickering V., Aragundi J. ( 1987). Variability of populations of the witches’ broom disease of cocoa (Crinipellis perniciosa). Trans Br Mycol Soc 88:533–546 [View Article]
    [Google Scholar]
  28. Hua-Van A., Davière J. M., Kaper F., Langin T., Daboussi M. J. ( 2000). Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37:339–347 [View Article][PubMed]
    [Google Scholar]
  29. Ignacchiti M. D. C., Santana M. F., Araújo E. F., Queiroz M. V. ( 2011). The distribution of a transposase sequence in Moniliophthora perniciosa confirms the occurrence of two genotypes in Bahia, Brazil. Trop Plant Pathol 36:276–286 [View Article]
    [Google Scholar]
  30. Jiang N., Bao Z., Zhang X., Hirochika H., Eddy S. R., McCouch S. R., Wessler S. R. ( 2003). An active DNA transposon family in rice. Nature 421:163–167 [View Article][PubMed]
    [Google Scholar]
  31. Jurka J., Kapitonov V. V. ( 2001). PIFs meet Tourists and Harbingers: a superfamily reunion. Proc Natl Acad Sci U S A 98:12315–12316 [View Article][PubMed]
    [Google Scholar]
  32. Kaneko I., Tanaka A., Tsuge T. ( 2000). REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata . Mol Gen Genet 263:625–634 [View Article][PubMed]
    [Google Scholar]
  33. Kapitonov V. V., Jurka J. ( 1999). Molecular paleontology of transposable elements from Arabidopsis thaliana . Genetica 107:27–37 [View Article][PubMed]
    [Google Scholar]
  34. Kapitonov V. V., Jurka J. ( 2004). Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol 23:311–324 [View Article][PubMed]
    [Google Scholar]
  35. Keyhani N. O. ( 2011). Fungal genomes and beyond. Fungal Genom Biol 1:e101 [View Article]
    [Google Scholar]
  36. Kito H., Takahashi Y., Sato J., Fukiya S., Sone T., Tomita F. ( 2003). Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr Genet 42:322–331 [View Article][PubMed]
    [Google Scholar]
  37. Langin T., Capy P., Daboussi M. J. ( 1995). The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28 [View Article][PubMed]
    [Google Scholar]
  38. Marchler-Bauer A., Bryant S. H. ( 2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:Web Server issueW327–W331 [View Article][PubMed]
    [Google Scholar]
  39. Maurer P., Réjasse A., Capy P., Langin T., Riba G. ( 1997). Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol Gen Genet 256:195–202 [View Article][PubMed]
    [Google Scholar]
  40. McClintock B. ( 1984). The significance of responses of the genome to challenge. Science 226:792–801 [View Article][PubMed]
    [Google Scholar]
  41. Mes J. J., Haring M. A., Cornelissen B. J. C. ( 2000). Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum . Mol Gen Genet 263:271–280 [View Article][PubMed]
    [Google Scholar]
  42. Mondego J. M. C., Carazzolle M. F., Costa G. G. L., Formighieri E. F., Parizzi L. P., Rincones J., Cotomacci C., Carraro D. M., Cunha A. F. & other authors ( 2008). A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics 9:548 [View Article][PubMed]
    [Google Scholar]
  43. Nakayashiki H., Nishimoto N., Ikeda K., Tosa Y., Mayama S. ( 1999). Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol Gen Genet 261:958–966 [View Article][PubMed]
    [Google Scholar]
  44. Niella G., Resende M. L., Castro H. A., de Carvalho G. A., Silva L. H. C. P. ( 1999). Aperfeiçoamento da metodologia de produção artificial de basidiocarpos de Crinipellis perniciosa . Fitopatol Bras 24:523–527
    [Google Scholar]
  45. Ogasawara H., Obata H., Hata Y., Takahashi S., Gomi K. ( 2009). Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. Fungal Genet Biol 46:441–449 [View Article][PubMed]
    [Google Scholar]
  46. Okuda M., Ikeda K., Namiki F., Nishi K., Tsuge T. ( 1998). Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum . Mol Gen Genet 258:599–607 [View Article][PubMed]
    [Google Scholar]
  47. Pereira J. L., de Almeida L. C. C., Santos S. M. ( 1996). Witches’ broom disease of cocoa in Bahia: attempts at eradication and containment. Crop Prot 15:743–752 [View Article]
    [Google Scholar]
  48. Pereira J. F., Araújo E. F., Brommonschenkel S. H., Queiroz M. V. ( 2006). Elementos transponíveis em fungos fitopatogênicos. Rev Anual Patol Plant 14:303–362
    [Google Scholar]
  49. Pereira J. F., Ignacchiti M. D. C., Araújo E. F., Brommonschenkel S. H., Cascardo J. C. M., Pereira G. A. G., Queiroz M. V. ( 2007). PCR amplification and sequence analyses of reverse transcriptase-like genes in Crinipellis perniciosa isolates. Fitopatol Bras 32:373–380 [View Article]
    [Google Scholar]
  50. Ploetz R. C., Schnell R. J., Ying Z. T., Zheng Q., Olano C. T., Motamayor J. C., Johnson E. S. ( 2005). Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. Eur J Plant Pathol 111:317–326 [View Article]
    [Google Scholar]
  51. Pontecorvo G., Roper J. A. L., Hemmons L. M., MacDonald K. D., Bufton A. W. J. ( 1953). The genetics of Aspergillus nidulans . Adv Genet 5:141–238 [View Article][PubMed]
    [Google Scholar]
  52. Rep M., van der Does H. C., Cornelissen B. J. ( 2005). Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol 42:546–553 [View Article][PubMed]
    [Google Scholar]
  53. Rincones J., Meinhardt L. W., Vidal B. C., Pereira G. A. G. ( 2003). Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao . Mycol Res 107:452–458 [View Article][PubMed]
    [Google Scholar]
  54. Rincones J., Mazotti G. D., Griffith G. W., Pomela A., Figueira A., Leal G. A. Jr, Queiroz M. V., Pereira J. F., Azevedo R. A. & other authors ( 2006). Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res 110:821–832 [View Article][PubMed]
    [Google Scholar]
  55. Rincones J., Scarpari L. M., Carazzolle M. F., Mondego J. M. C., Formighieri E. F., Barau J. G., Costa G. G. L., Carraro D. M., Brentani H. P. & other authors ( 2008). Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa . Mol Plant Microbe Interact 21:891–908 [View Article][PubMed]
    [Google Scholar]
  56. Saitou N., Nei M. ( 1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sanger F., Nicklen S., Coulson A. R. ( 1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  59. Schmidt S. M., Panstruga R. ( 2011). Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?. Curr Opin Plant Biol 14:392–399 [View Article][PubMed]
    [Google Scholar]
  60. Shim W. B., Dunkle L. D. ( 2005). Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis . Mycologia 97:349–355 [View Article][PubMed]
    [Google Scholar]
  61. Shnyreva A. V. ( 2003). Transposable elements are the factors involved in various rearrangements and modifications of fungal genomes. Russ J Genet 39:505–518 [View Article]
    [Google Scholar]
  62. Shull V., Hamer J. E. ( 1996). Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genet Biol 20:59–69 [View Article][PubMed]
    [Google Scholar]
  63. Sinzelle L., Kapitonov V. V., Grzela D. P., Jursch T., Jurka J., Izsvák Z., Ivics Z. ( 2008). Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc Natl Acad Sci U S A 105:4715–4720 [View Article][PubMed]
    [Google Scholar]
  64. Specht C. A., DiRusso C. C., Novotny C. P., Ullrich R. C. ( 1982). A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem 119:158–163[PubMed] [CrossRef]
    [Google Scholar]
  65. Stanke M., Morgenstern B. ( 2005). augustus: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:Web Server issueW465–W467 [View Article][PubMed]
    [Google Scholar]
  66. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  67. Walker E. L., Eggleston W. B., Demopulos D., Kermicle J., Dellaporta S. L. ( 1997). Insertions of a novel class of transposable elements with a strong target site preference at the r locus of maize. Genetics 146:681–693[PubMed]
    [Google Scholar]
  68. Wessler S. R., Bureau T. E., White S. E. ( 1995). LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821 [View Article][PubMed]
    [Google Scholar]
  69. Wicker T., Sabot F., Hua-Van A., Bennetzen J. L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M. & other authors ( 2007). A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982 [View Article][PubMed]
    [Google Scholar]
  70. Wöstemeyer J., Kreibich A. ( 2002). Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr Genet 41:189–198 [View Article][PubMed]
    [Google Scholar]
  71. Yang G. J., Zhang F., Hancock C. N., Wessler S. R. ( 2007). Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana . Proc Natl Acad Sci U S A 104:10962–10967 [View Article][PubMed]
    [Google Scholar]
  72. Yeadon P. J., Catcheside D. E. ( 1995). Guest: a 98 bp inverted repeat transposable element in Neurospora crassa . Mol Gen Genet 247:105–109 [View Article][PubMed]
    [Google Scholar]
  73. Zhang X., Feschotte C., Zhang Q., Jiang N., Eggleston W. B., Wessler S. R. ( 2001). P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A 98:12572–12577 [View Article][PubMed]
    [Google Scholar]
  74. Zhang X., Jiang N., Feschotte C., Wessler S. R. ( 2004). PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166:971–986[PubMed] [CrossRef]
    [Google Scholar]
  75. Zhou M. B., Lu J.-J., Zhong H., Liu X.-M., Tang D.-Q. ( 2010). Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. Plant Sci 179:257–266 [View Article]
    [Google Scholar]
  76. Zhou M. B., Liu X. M., Tang D. Q. ( 2012). PpPIF-1: first isolated full-length PIF-like element from the bamboo Phyllostachys pubescens . Genet Mol Res 11:810–820 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.062901-0
Loading
/content/journal/micro/10.1099/mic.0.062901-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error