1887

Abstract

, a class II transposable element, was characterized in the genome. The transposase is highly similar to plant -like transposases that belong to the newest class II superfamily known as /. Although shares characteristics with -like elements, other characteristics, such as the transposase intron position, the position and direction of the second ORF, and the footprint, indicate that belongs to a novel family of the / superfamily. Southern blot analyses detected 6–12 copies of in C-biotype isolates and a ubiquitous presence among the C- and S-biotypes, as well as a separation in the C-biotype isolates from Bahia State in Brazil in at least two genotypic groups, and a new insertion in the genome of a C-biotype isolate maintained in the laboratory for 6 years. In addition to PCR amplification from a specific insertion site, changes in the hybridization profile after the sexual cycle and detection of transcripts gave further evidence of activity. As an active family in the genome of , elements may contribute to genetic variability in this homothallic fungus. This is the first report of a / transposon in the genome of a phytopathogenic fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062901-0
2013-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/112.html?itemId=/content/journal/micro/10.1099/mic.0.062901-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anaya N. , Roncero M. I. G. . ( 1996; ). Stress-induced rearrangement of Fusarium retrotransposon sequences. . Mol Gen Genet 253:, 89–94. [CrossRef] [PubMed]
    [Google Scholar]
  3. Andebrhan T. , Furtek D. B. . ( 1994; ). Random amplified polymorphic DNA (RAPD) analysis of Crinipellis perniciosa isolates from different hosts. . Plant Pathol 43:, 1020–1027. [CrossRef]
    [Google Scholar]
  4. Andebrhan T. , Figueira A. , Yamada M. M. , Cascardo J. , Furtek D. B. . ( 1999; ). Molecular fingerprinting suggests two primary outbreaks of witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. . Eur J Plant Pathol 105:, 167–175.[CrossRef]
    [Google Scholar]
  5. Bastos C. N. , Evans H. C. . ( 1985; ). A new pathotype of Crinipellis perniciosa (Witches’ broom disease) on solanaceous hosts. . Plant Pathol 34:, 306–312. [CrossRef]
    [Google Scholar]
  6. Bastos C. N. , Andebrhan T. , de Almeida L. C. . ( 1988; ). Comparação morfológica de isolados de Crinipellis perniciosa . . Fitopatol Bras 13:, 202–205.
    [Google Scholar]
  7. Benton W. D. , Davis R. W. . ( 1977; ). Screening lambdagt recombinant clones by hybridization to single plaques in situ. . Science 196:, 180–182. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bergemann M. , Lespinet O. , M’Barek S. B. , Daboussi M. J. , Dufresne M. . ( 2008; ). Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps . . J Mol Evol 67:, 631–642. [CrossRef] [PubMed]
    [Google Scholar]
  9. Daboussi M. J. , Capy P. . ( 2003; ). Transposable elements in filamentous fungi. . Annu Rev Microbiol 57:, 275–299. [CrossRef] [PubMed]
    [Google Scholar]
  10. Daboussi M. J. , Langin T. . ( 1994; ). Transposable elements in the fungal plant pathogen Fusarium oxysporum . . Genetica 93:, 49–59. [CrossRef]
    [Google Scholar]
  11. Daboussi M. J. , Langin T. , Brygoo Y. . ( 1992; ). Fot1, a new family of fungal transposable elements. . Mol Gen Genet 232:, 12–16. [CrossRef] [PubMed]
    [Google Scholar]
  12. de Arruda M. C. , Ferreira M. A. , Miller R. N. , Resende M. L. , Felipe M. S. . ( 2003a; ). Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts. . Mycol Res 107:, 25–37. [CrossRef] [PubMed]
    [Google Scholar]
  13. de Arruda M. C. , Miller R. N. , Ferreira M. A. , Felipe M. S. . ( 2003b; ). Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprint. . Plant Pathol 52:, 236–244. [CrossRef]
    [Google Scholar]
  14. Dobinson K. F. , Harris R. E. , Hamer J. E. . ( 1993; ). Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea . . Mol Plant Microbe Interact 6:, 114–126. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dufresne M. , Hua-Van A. , El Wahab H. A. , Ben M’Barek S. , Vasnier C. , Teysset L. , Kema G. H. J. , Daboussi M. J. . ( 2007; ). Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. . Genetics 175:, 441–452. [CrossRef] [PubMed]
    [Google Scholar]
  16. Evans H. C. . ( 1978; ). Witches’ broom disease of cocoa (Crinipellis perniciosa) in Ecuador. . Ann Appl Biol 89:, 185–192. [CrossRef]
    [Google Scholar]
  17. Felipe M. S. S. , Azevedo M. A. , Vainstein M. H. , Schrank A. . ( 1992; ). Biologia molecular de fungos filamentosos: construção de banco genômico e de cDNA. . In Manual Técnico, p. 99. Piracicaba, SP, Brazil:: Escola Superior de Agricultura ‘Luiz de Queiroz’;.
    [Google Scholar]
  18. Fleetwood D. J. , Scott B. , Lane G. A. , Tanaka A. , Johnson R. D. . ( 2007; ). A complex ergovaline gene cluster in epichloe endophytes of grasses. . Appl Environ Microbiol 73:, 2571–2579. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fleetwood D. J. , Khan A. K. , Johnson R. D. , Young C. A. , Mittal S. , Wrenn R. E. , Hesse U. , Foster S. J. , Schardl C. L. , Scott B. . ( 2011; ). Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. . Genome Biol Evol 3:, 1253–1264. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gómez-Gómez E. , Anaya N. , Roncero M. I. G. , Hera C. . ( 1999; ). Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum . . Fungal Genet Biol 27:, 67–76. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goodwin T. J. , Poulter R. T. . ( 2001; ). The DIRS1 group of retrotransposons. . Mol Biol Evol 18:, 2067–2082. [CrossRef] [PubMed]
    [Google Scholar]
  22. Goodwin T. J. , Butler M. I. , Poulter R. T. . ( 2003; ). Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. . Microbiology 149:, 3099–3109. [CrossRef] [PubMed]
    [Google Scholar]
  23. Griffith G. W. , Hedger J. N. . ( 1993; ). A novel method for producing basidiocarps of the cocoa pathogen Crinipellis perniciosa using a bran-vermiculite medium. . Eur J Plant Pathol 99:, 227–230.
    [Google Scholar]
  24. Grzebelus D. , Yau Y. Y. , Simon P. W. . ( 2006; ). Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). . Mol Genet Genomics 275:, 450–459. [PubMed] [CrossRef]
    [Google Scholar]
  25. Hancock C. N. , Zhang F. , Wessler S. R. . ( 2010; ). Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. . Mob DNA 1:, 5. [CrossRef] [PubMed]
    [Google Scholar]
  26. He C. , Nourse J. P. , Irwin J. A. G. , Manners J. M. , Kelemu S. . ( 1996; ). CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides . . Mol Gen Genet 252:, 320–331. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hedger J. N. , Pickering V. , Aragundi J. . ( 1987; ). Variability of populations of the witches’ broom disease of cocoa (Crinipellis perniciosa). . Trans Br Mycol Soc 88:, 533–546. [CrossRef]
    [Google Scholar]
  28. Hua-Van A. , Davière J. M. , Kaper F. , Langin T. , Daboussi M. J. . ( 2000; ). Genome organization in Fusarium oxysporum: clusters of class II transposons. . Curr Genet 37:, 339–347. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ignacchiti M. D. C. , Santana M. F. , Araújo E. F. , Queiroz M. V. . ( 2011; ). The distribution of a transposase sequence in Moniliophthora perniciosa confirms the occurrence of two genotypes in Bahia, Brazil. . Trop Plant Pathol 36:, 276–286. [CrossRef]
    [Google Scholar]
  30. Jiang N. , Bao Z. , Zhang X. , Hirochika H. , Eddy S. R. , McCouch S. R. , Wessler S. R. . ( 2003; ). An active DNA transposon family in rice. . Nature 421:, 163–167. [CrossRef] [PubMed]
    [Google Scholar]
  31. Jurka J. , Kapitonov V. V. . ( 2001; ). PIFs meet Tourists and Harbingers: a superfamily reunion. . Proc Natl Acad Sci U S A 98:, 12315–12316. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kaneko I. , Tanaka A. , Tsuge T. . ( 2000; ). REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata . . Mol Gen Genet 263:, 625–634. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kapitonov V. V. , Jurka J. . ( 1999; ). Molecular paleontology of transposable elements from Arabidopsis thaliana . . Genetica 107:, 27–37. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kapitonov V. V. , Jurka J. . ( 2004; ). Harbinger transposons and an ancient HARBI1 gene derived from a transposase. . DNA Cell Biol 23:, 311–324. [CrossRef] [PubMed]
    [Google Scholar]
  35. Keyhani N. O. . ( 2011; ). Fungal genomes and beyond. . Fungal Genom Biol 1:, e101. [CrossRef]
    [Google Scholar]
  36. Kito H. , Takahashi Y. , Sato J. , Fukiya S. , Sone T. , Tomita F. . ( 2003; ). Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. . Curr Genet 42:, 322–331. [CrossRef] [PubMed]
    [Google Scholar]
  37. Langin T. , Capy P. , Daboussi M. J. . ( 1995; ). The transposable element impala, a fungal member of the Tc1-mariner superfamily. . Mol Gen Genet 246:, 19–28. [CrossRef] [PubMed]
    [Google Scholar]
  38. Marchler-Bauer A. , Bryant S. H. . ( 2004; ). CD-Search: protein domain annotations on the fly. . Nucleic Acids Res 32: (Web Server issue), W327–W331. [CrossRef] [PubMed]
    [Google Scholar]
  39. Maurer P. , Réjasse A. , Capy P. , Langin T. , Riba G. . ( 1997; ). Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. . Mol Gen Genet 256:, 195–202. [CrossRef] [PubMed]
    [Google Scholar]
  40. McClintock B. . ( 1984; ). The significance of responses of the genome to challenge. . Science 226:, 792–801. [CrossRef] [PubMed]
    [Google Scholar]
  41. Mes J. J. , Haring M. A. , Cornelissen B. J. C. . ( 2000; ). Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum . . Mol Gen Genet 263:, 271–280. [CrossRef] [PubMed]
    [Google Scholar]
  42. Mondego J. M. C. , Carazzolle M. F. , Costa G. G. L. , Formighieri E. F. , Parizzi L. P. , Rincones J. , Cotomacci C. , Carraro D. M. , Cunha A. F. . & other authors ( 2008; ). A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. . BMC Genomics 9:, 548. [CrossRef] [PubMed]
    [Google Scholar]
  43. Nakayashiki H. , Nishimoto N. , Ikeda K. , Tosa Y. , Mayama S. . ( 1999; ). Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. . Mol Gen Genet 261:, 958–966. [CrossRef] [PubMed]
    [Google Scholar]
  44. Niella G. , Resende M. L. , Castro H. A. , de Carvalho G. A. , Silva L. H. C. P. . ( 1999; ). Aperfeiçoamento da metodologia de produção artificial de basidiocarpos de Crinipellis perniciosa . . Fitopatol Bras 24:, 523–527.
    [Google Scholar]
  45. Ogasawara H. , Obata H. , Hata Y. , Takahashi S. , Gomi K. . ( 2009; ). Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions. . Fungal Genet Biol 46:, 441–449. [CrossRef] [PubMed]
    [Google Scholar]
  46. Okuda M. , Ikeda K. , Namiki F. , Nishi K. , Tsuge T. . ( 1998; ). Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum . . Mol Gen Genet 258:, 599–607. [CrossRef] [PubMed]
    [Google Scholar]
  47. Pereira J. L. , de Almeida L. C. C. , Santos S. M. . ( 1996; ). Witches’ broom disease of cocoa in Bahia: attempts at eradication and containment. . Crop Prot 15:, 743–752. [CrossRef]
    [Google Scholar]
  48. Pereira J. F. , Araújo E. F. , Brommonschenkel S. H. , Queiroz M. V. . ( 2006; ). Elementos transponíveis em fungos fitopatogênicos. . Rev Anual Patol Plant 14:, 303–362.
    [Google Scholar]
  49. Pereira J. F. , Ignacchiti M. D. C. , Araújo E. F. , Brommonschenkel S. H. , Cascardo J. C. M. , Pereira G. A. G. , Queiroz M. V. . ( 2007; ). PCR amplification and sequence analyses of reverse transcriptase-like genes in Crinipellis perniciosa isolates. . Fitopatol Bras 32:, 373–380. [CrossRef]
    [Google Scholar]
  50. Ploetz R. C. , Schnell R. J. , Ying Z. T. , Zheng Q. , Olano C. T. , Motamayor J. C. , Johnson E. S. . ( 2005; ). Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. . Eur J Plant Pathol 111:, 317–326. [CrossRef]
    [Google Scholar]
  51. Pontecorvo G. , Roper J. A. L. , Hemmons L. M. , MacDonald K. D. , Bufton A. W. J. . ( 1953; ). The genetics of Aspergillus nidulans . . Adv Genet 5:, 141–238. [CrossRef] [PubMed]
    [Google Scholar]
  52. Rep M. , van der Does H. C. , Cornelissen B. J. . ( 2005; ). Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. . Fungal Genet Biol 42:, 546–553. [CrossRef] [PubMed]
    [Google Scholar]
  53. Rincones J. , Meinhardt L. W. , Vidal B. C. , Pereira G. A. G. . ( 2003; ). Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao . . Mycol Res 107:, 452–458. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rincones J. , Mazotti G. D. , Griffith G. W. , Pomela A. , Figueira A. , Leal G. A. Jr , Queiroz M. V. , Pereira J. F. , Azevedo R. A. . & other authors ( 2006; ). Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. . Mycol Res 110:, 821–832. [CrossRef] [PubMed]
    [Google Scholar]
  55. Rincones J. , Scarpari L. M. , Carazzolle M. F. , Mondego J. M. C. , Formighieri E. F. , Barau J. G. , Costa G. G. L. , Carraro D. M. , Brentani H. P. . & other authors ( 2008; ). Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa . . Mol Plant Microbe Interact 21:, 891–908. [CrossRef] [PubMed]
    [Google Scholar]
  56. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  57. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  58. Sanger F. , Nicklen S. , Coulson A. R. . ( 1977; ). DNA sequencing with chain-terminating inhibitors. . Proc Natl Acad Sci U S A 74:, 5463–5467. [CrossRef] [PubMed]
    [Google Scholar]
  59. Schmidt S. M. , Panstruga R. . ( 2011; ). Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?. Curr Opin Plant Biol 14:, 392–399. [CrossRef] [PubMed]
    [Google Scholar]
  60. Shim W. B. , Dunkle L. D. . ( 2005; ). Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis . . Mycologia 97:, 349–355. [CrossRef] [PubMed]
    [Google Scholar]
  61. Shnyreva A. V. . ( 2003; ). Transposable elements are the factors involved in various rearrangements and modifications of fungal genomes. . Russ J Genet 39:, 505–518. [CrossRef]
    [Google Scholar]
  62. Shull V. , Hamer J. E. . ( 1996; ). Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. . Fungal Genet Biol 20:, 59–69. [CrossRef] [PubMed]
    [Google Scholar]
  63. Sinzelle L. , Kapitonov V. V. , Grzela D. P. , Jursch T. , Jurka J. , Izsvák Z. , Ivics Z. . ( 2008; ). Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. . Proc Natl Acad Sci U S A 105:, 4715–4720. [CrossRef] [PubMed]
    [Google Scholar]
  64. Specht C. A. , DiRusso C. C. , Novotny C. P. , Ullrich R. C. . ( 1982; ). A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. . Anal Biochem 119:, 158–163. [PubMed] [CrossRef]
    [Google Scholar]
  65. Stanke M. , Morgenstern B. . ( 2005; ). augustus: a web server for gene prediction in eukaryotes that allows user-defined constraints. . Nucleic Acids Res 33: (Web Server issue), W465–W467. [CrossRef] [PubMed]
    [Google Scholar]
  66. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  67. Walker E. L. , Eggleston W. B. , Demopulos D. , Kermicle J. , Dellaporta S. L. . ( 1997; ). Insertions of a novel class of transposable elements with a strong target site preference at the r locus of maize. . Genetics 146:, 681–693.[PubMed]
    [Google Scholar]
  68. Wessler S. R. , Bureau T. E. , White S. E. . ( 1995; ). LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. . Curr Opin Genet Dev 5:, 814–821. [CrossRef] [PubMed]
    [Google Scholar]
  69. Wicker T. , Sabot F. , Hua-Van A. , Bennetzen J. L. , Capy P. , Chalhoub B. , Flavell A. , Leroy P. , Morgante M. . & other authors ( 2007; ). A unified classification system for eukaryotic transposable elements. . Nat Rev Genet 8:, 973–982. [CrossRef] [PubMed]
    [Google Scholar]
  70. Wöstemeyer J. , Kreibich A. . ( 2002; ). Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. . Curr Genet 41:, 189–198. [CrossRef] [PubMed]
    [Google Scholar]
  71. Yang G. J. , Zhang F. , Hancock C. N. , Wessler S. R. . ( 2007; ). Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana . . Proc Natl Acad Sci U S A 104:, 10962–10967. [CrossRef] [PubMed]
    [Google Scholar]
  72. Yeadon P. J. , Catcheside D. E. . ( 1995; ). Guest: a 98 bp inverted repeat transposable element in Neurospora crassa . . Mol Gen Genet 247:, 105–109. [CrossRef] [PubMed]
    [Google Scholar]
  73. Zhang X. , Feschotte C. , Zhang Q. , Jiang N. , Eggleston W. B. , Wessler S. R. . ( 2001; ). P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. . Proc Natl Acad Sci U S A 98:, 12572–12577. [CrossRef] [PubMed]
    [Google Scholar]
  74. Zhang X. , Jiang N. , Feschotte C. , Wessler S. R. . ( 2004; ). PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. . Genetics 166:, 971–986. [PubMed] [CrossRef]
    [Google Scholar]
  75. Zhou M. B. , Lu J.-J. , Zhong H. , Liu X.-M. , Tang D.-Q. . ( 2010; ). Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. . Plant Sci 179:, 257–266. [CrossRef]
    [Google Scholar]
  76. Zhou M. B. , Liu X. M. , Tang D. Q. . ( 2012; ). PpPIF-1: first isolated full-length PIF-like element from the bamboo Phyllostachys pubescens . . Genet Mol Res 11:, 810–820. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062901-0
Loading
/content/journal/micro/10.1099/mic.0.062901-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error