1887

Abstract

Knowledge on the proteome level about the adaptation of pathogenic mycobacteria to the environment in their natural hosts is limited. subsp. (MAP) causes Johne’s disease, a chronic and incurable granulomatous enteritis of ruminants, and has been suggested to be a putative aetiological agent of Crohn’s disease in humans. Using a comprehensive LC-MS-MS and 2D difference gel electrophoresis (DIGE) approach, we compared the protein profiles of clinical strains of MAP prepared from the gastrointestinal tract of diseased cows with the protein profiles of the same strains after they were grown . LC-MS-MS analyses revealed that the principal enzymes for the central carbon metabolic pathways, including glycolysis, gluconeogenesis, the tricaboxylic acid cycle and the pentose phosphate pathway, were present under both conditions. Moreover, a broad spectrum of enzymes for β-oxidation of lipids, nine of which have been shown to be necessary for mycobacterial growth on cholesterol, were detected and . Using 2D-DIGE we found increased levels of several key enzymes that indicated adaptation of MAP to the host. Among these, FadE5, FadE25 and AdhB indicated that cholesterol is used as a carbon source in the bovine intestinal mucosa; the respiratory enzymes AtpA, NuoG and SdhA suggested increased respiration during infection. Furthermore higher levels of the pentose phosphate pathway enzymes Gnd2, Zwf and Tal as well as of KatG, SodA and GroEL indicated a vigorous stress response of MAP . In conclusion, our results provide novel insights into the metabolic adaptation of a pathogenic mycobacterium in its natural host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062737-0
2013-02-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/380.html?itemId=/content/journal/micro/10.1099/mic.0.062737-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Lloyd G. S., Lloyd A. J., Lovering A. L., Eggeling L., Besra G. S. ( 2011). Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 21:410–425 [View Article][PubMed]
    [Google Scholar]
  2. Basu D., Khare G., Singh S., Tyagi A., Khosla S., Mande S. C. ( 2009). A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Res 37:4944–4954 [View Article][PubMed]
    [Google Scholar]
  3. Baughn A. D., Garforth S. J., Vilchèze C., Jacobs W. R. Jr ( 2009). An anaerobic-type α-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis . PLoS Pathog 5:e1000662 [View Article][PubMed]
    [Google Scholar]
  4. Bell C., Smith G. T., Sweredoski M. J., Hess S. ( 2012). Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research. J Proteome Res 11:119–130 [View Article][PubMed]
    [Google Scholar]
  5. Berney M., Cook G. M. ( 2010). Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS ONE 5:e8614 [View Article][PubMed]
    [Google Scholar]
  6. Böer U., Lohrenz A., Klingenberg M., Pich A., Haverich A., Wilhelmi M. ( 2011). The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32:9730–9737 [View Article][PubMed]
    [Google Scholar]
  7. Buergelt C. D., Hall C., McEntee K., Duncan J. R. ( 1978). Pathological evaluation of paratuberculosis in naturally infected cattle. Vet Pathol 15:196–207 [View Article][PubMed]
    [Google Scholar]
  8. Buettner F. F., Bendalla I. M., Bossé J. T., Meens J., Nash J. H., Härtig E., Langford P. R., Gerlach G. F. ( 2009). Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics 9:2383–2398 [View Article][PubMed]
    [Google Scholar]
  9. Chang J. C., Miner M. D., Pandey A. K., Gill W. P., Harik N. S., Sassetti C. M., Sherman D. R. ( 2009). igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191:5232–5239 [View Article][PubMed]
    [Google Scholar]
  10. Clarke C. J. ( 1997). The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 116:217–261 [View Article][PubMed]
    [Google Scholar]
  11. Coussens P. M. ( 2001). Mycobacterium paratuberculosis and the bovine immune system. Anim Health Res Rev 2:141–161[PubMed]
    [Google Scholar]
  12. Dosanjh N. S., Rawat M., Chung J. H., Av-Gay Y. ( 2005). Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiol Lett 249:87–94 [View Article][PubMed]
    [Google Scholar]
  13. Edwards K. M., Cynamon M. H., Voladri R. K., Hager C. C., DeStefano M. S., Tham K. T., Lakey D. L., Bochan M. R., Kernodle D. S. ( 2001). Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis . Am J Respir Crit Care Med 164:2213–2219[PubMed] [CrossRef]
    [Google Scholar]
  14. Egan S., Lanigan M., Shiell B., Beddome G., Stewart D., Vaughan J., Michalski W. P. ( 2008). The recovery of Mycobacterium avium subspecies paratuberculosis from the intestine of infected ruminants for proteomic evaluation. J Microbiol Methods 75:29–39 [View Article][PubMed]
    [Google Scholar]
  15. Ehrt S., Schnappinger D. ( 2009). Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11:1170–1178 [View Article][PubMed]
    [Google Scholar]
  16. Eisenreich W., Dandekar T., Heesemann J., Goebel W. ( 2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412 [View Article][PubMed]
    [Google Scholar]
  17. Friedman D. B., Wang S. E., Whitwell C. W., Caprioli R. M., Arteaga C. L. ( 2007). Multivariable difference gel electrophoresis and mass spectrometry: a case study on transforming growth factor-β and ERBB2 signaling. Mol Cell Proteomics 6:150–169[PubMed] [CrossRef]
    [Google Scholar]
  18. Friedrich T., Böttcher B. ( 2004). The gross structure of the respiratory complex I: a Lego System. Biochim Biophys Acta 1608:1–9 [View Article][PubMed]
    [Google Scholar]
  19. Granger K., Moore R. J., Davies J. K., Vaughan J. A., Stiles P. L., Stewart D. J., Tizard M. L. ( 2004). Recovery of Mycobacterium avium subspecies paratuberculosis from the natural host for the extraction and analysis in vivo-derived RNA. J Microbiol Methods 57:241–249 [View Article][PubMed]
    [Google Scholar]
  20. Greenstein R. J. ( 2003). Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis 3:507–514 [View Article][PubMed]
    [Google Scholar]
  21. Griffin J. E., Gawronski J. D., Dejesus M. A., Ioerger T. R., Akerley B. J., Sassetti C. M. ( 2011). High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251 [View Article][PubMed]
    [Google Scholar]
  22. Harris N. B., Barletta R. G. ( 2001). Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin Microbiol Rev 14:489–512 [View Article][PubMed]
    [Google Scholar]
  23. Hughes V., Smith S., Garcia-Sanchez A., Sales J., Stevenson K. ( 2007). Proteomic comparison of Mycobacterium avium subspecies paratuberculosis grown in vitro and isolated from clinical cases of ovine paratuberculosis . Microbiology 153:196–206 [View Article][PubMed]
    [Google Scholar]
  24. Jaeger T. ( 2007). Peroxiredoxin systems in mycobacteria. Subcell Biochem 44:207–217 [View Article][PubMed]
    [Google Scholar]
  25. Janagama H. K., Lamont E. A., George S., Bannantine J. P., Xu W. W., Tu Z. J., Wells S. J., Schefers J., Sreevatsan S. ( 2010). Primary transcriptomes of Mycobacterium avium subsp. paratuberculosis reveal proprietary pathways in tissue and macrophages. BMC Genomics 11:561 [View Article][PubMed]
    [Google Scholar]
  26. Kuehnel M. P., Goethe R., Habermann A., Mueller E., Rohde M., Griffiths G., Valentin-Weigand P. ( 2001). Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol 3:551–566 [View Article][PubMed]
    [Google Scholar]
  27. Lewthwaite J. C., Coates A. R., Tormay P., Singh M., Mascagni P., Poole S., Roberts M., Sharp L., Henderson B. ( 2001). Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355 [View Article][PubMed]
    [Google Scholar]
  28. Li Z., Kelley C., Collins F., Rouse D., Morris S. ( 1998). Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177:1030–1035 [View Article][PubMed]
    [Google Scholar]
  29. Manning E. J., Collins M. T. ( 2001). Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Rev Sci Tech 20:133–150[PubMed]
    [Google Scholar]
  30. Marrero J., Rhee K. Y., Schnappinger D., Pethe K., Ehrt S. ( 2010). Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107:9819–9824 [View Article][PubMed]
    [Google Scholar]
  31. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. ( 2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 [View Article][PubMed]
    [Google Scholar]
  32. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. ( 2001). Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471[PubMed]
    [Google Scholar]
  33. Mukhopadhyay S., Nair S., Ghosh S. ( 2012). Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 36:463–485 [View Article][PubMed]
    [Google Scholar]
  34. Muñoz-Elías E. J., McKinney J. D. ( 2005). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644 [View Article][PubMed]
    [Google Scholar]
  35. Muñoz-Elías E. J., McKinney J. D. ( 2006). Carbon metabolism of intracellular bacteria. Cell Microbiol 8:10–22 [View Article][PubMed]
    [Google Scholar]
  36. Nesbitt N. M., Yang X., Fontán P., Kolesnikova I., Smith I., Sampson N. S., Dubnau E. ( 2010). A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78:275–282 [View Article][PubMed]
    [Google Scholar]
  37. Orme I. M., Roberts A. D., Griffin J. P., Abrams J. S. ( 1993). Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol 151:518–525[PubMed]
    [Google Scholar]
  38. Pandey A. K., Sassetti C. M. ( 2008). Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105:4376–4380 [View Article][PubMed]
    [Google Scholar]
  39. Rhee K. Y., de Carvalho L. P., Bryk R., Ehrt S., Marrero J., Park S. W., Schnappinger D., Venugopal A., Nathan C. ( 2011). Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314 [View Article][PubMed]
    [Google Scholar]
  40. Russell D. G., VanderVen B. C., Lee W., Abramovitch R. B., Kim M. J., Homolka S., Niemann S., Rohde K. H. ( 2010). Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8:68–76 [View Article][PubMed]
    [Google Scholar]
  41. Sassetti C. M., Rubin E. J. ( 2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994 [View Article][PubMed]
    [Google Scholar]
  42. Seshadri A., Samhita L., Gaur R., Malshetty V., Varshney U. ( 2009). Analysis of the fusA2 locus encoding EFG2 in Mycobacterium smegmatis . Tuberculosis (Edinb) 89:453–464 [View Article][PubMed]
    [Google Scholar]
  43. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. ( 2002). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138[PubMed]
    [Google Scholar]
  44. Tonge R., Shaw J., Middleton B., Rowlinson R., Rayner S., Young J., Pognan F., Hawkins E., Currie I., Davison M. ( 2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396 [View Article][PubMed]
    [Google Scholar]
  45. Van der Geize R., Yam K., Heuser T., Wilbrink M. H., Hara H., Anderton M. C., Sim E., Dijkhuizen L., Davies J. E. & other authors ( 2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952 [View Article][PubMed]
    [Google Scholar]
  46. Verbruggen N., Hermans C. ( 2008). Proline accumulation in plants: a review. Amino Acids 35:753–759 [View Article][PubMed]
    [Google Scholar]
  47. Voskuil M. I., Bartek I. L., Visconti K., Schoolnik G. K. ( 2011). The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2:105[PubMed] [CrossRef]
    [Google Scholar]
  48. Weigoldt M., Meens J., Doll K., Fritsch I., Möbius P., Goethe R., Gerlach G. F. ( 2011). Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne’s disease. Microbiology 157:557–565 [View Article][PubMed]
    [Google Scholar]
  49. Wu C. W., Schmoller S. K., Shin S. J., Talaat A. M. ( 2007). Defining the stressome of Mycobacterium avium subsp. paratuberculosis in vitro and in naturally infected cows. J Bacteriol 189:7877–7886 [View Article][PubMed]
    [Google Scholar]
  50. Zurbrick B. G., Czuprynski C. J. ( 1987). Ingestion and intracellular growth of Mycobacterium paratuberculosis within bovine blood monocytes and monocyte-derived macrophages. Infect Immun 55:1588–1593[PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.062737-0
Loading
/content/journal/micro/10.1099/mic.0.062737-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error