1887

Abstract

Volatile organic compounds (VOCs) released from or taken up by and cultures were analysed by means of GC–MS after adsorption of headspace samples on multi-bed sorption tubes. Sampling was performed at different time points during cultivation of bacteria to follow the dynamics of VOC metabolism. VOCs were identified not only by spectral library match but also based on retention times of native standards. As many as 34 volatile metabolites were released from and 28 from , comprising alcohols, aldehydes, esters, hydrocarbons, ketones and sulfur-containing compounds. For both species, acetic acid, acetaldehyde, methyl methacrylate, 2,3-butanedione and methanethiol were found in strongly elevated concentrations and 1-butanol and butanal in moderately elevated concentrations. In addition, characteristic volatile biomarkers were detected for both bacterial species and exclusively for , also catabolism of aldehydes (3-methylbutanal and hexanal) was found. The results obtained provide important input into the knowledge about volatile bacterial biomarkers, which may become particularly important for detection of pathogens in upper airways by breath-gas analysis in the future.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062687-0
2012-12-01
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3044.html?itemId=/content/journal/micro/10.1099/mic.0.062687-0&mimeType=html&fmt=ahah

References

  1. Acevedo C. A., Sánchez E. Y., Reyes J. G., Young M. E. ( 2007). Volatile organic compounds produced by human skin cells. Biol Res 40:347–355 [View Article][PubMed]
    [Google Scholar]
  2. Allardyce R. A., Langford V. S., Hill A. L., Murdoch D. R. ( 2006). Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT–MS). J Microbiol Methods 65:361–365 [View Article][PubMed]
    [Google Scholar]
  3. Amann A., Ligor M., Ligor T., Bajtarevic A., Ager C., Pienz M., Denz H., Fiegl M., Hilbe W. & other authors ( 2010). Analysis of exhaled breath for screening of lung cancer patients. MEMO 3:106–112 [View Article]
    [Google Scholar]
  4. Artlich A., Jónsson B., Bhiladvala M., Lönnqvist P. A., Gustafsson L. E. ( 2001). Single breath analysis of endogenous nitric oxide in the newborn. Biol Neonate 79:21–26 [View Article][PubMed]
    [Google Scholar]
  5. Bajtarevic A., Ager C., Pienz M., Klieber M., Schwarz K., Ligor M., Ligor T., Filipiak W., Denz H. & other authors ( 2009). Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9:348 [View Article][PubMed]
    [Google Scholar]
  6. Brooks G., Carroll K., Butel J., Morse S. ( 2007). Jawetz, Melnick & Adelberg's Medical Microbiology New York: McGraw-Hill;
    [Google Scholar]
  7. Buhr K., van Ruth S., Delahunty C. ( 2002). Analysis of volatile flavour compounds by proton transfer reaction mass spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spectrom 221:1–7 [View Article]
    [Google Scholar]
  8. Bunge M., Araghipour N., Mikoviny T., Dunkl J., Schnitzhofer R., Hansel A., Schinner F., Wisthaler A., Margesin R., Märk T. D. ( 2008). On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186 [View Article][PubMed]
    [Google Scholar]
  9. Chen X., Xu F., Wang Y., Pan Y., Lu D., Wang P., Ying K., Chen E., Zhang W. ( 2007). A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 110:835–844 [View Article][PubMed]
    [Google Scholar]
  10. Efron B., Tibshirani R. ( 1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75 [View Article]
    [Google Scholar]
  11. Eisenmann A., Amann A., Said M., Datta B., Ledochowski M. ( 2008). Implementation and interpretation of hydrogen breath tests. J Breath Res 2:046002 [View Article][PubMed]
    [Google Scholar]
  12. Eriksson A., Persson Waller K., Svennersten Sjaunja K., Haugen J. E., Lundby F., Lind O. ( 2005). Detection of mastitic milk using a gas-sensor array system (electronic nose). Int Dairy J 15:1193–1201 [View Article]
    [Google Scholar]
  13. Filipiak W., Sponring A., Mikoviny T., Ager C., Schubert J., Miekisch W., Amann A., Troppmair J. ( 2008). Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro . Cancer Cell Int 8:17 [View Article][PubMed]
    [Google Scholar]
  14. Filipiak W., Sponring A., Filipiak A., Ager C., Schubert J., Miekisch W., Amann A., Troppmair J. ( 2010). TD–GC–MS analysis of volatile metabolites of human lung cancer and normal cells in vitro . Cancer Epidemiol Biomarkers Prev 19:182–195 [View Article][PubMed]
    [Google Scholar]
  15. Filipiak W., Sponring A., Baur M. M., Filipiak A., Ager C., Wiesenhofer H., Nagl M., Troppmair J., Amann A. ( 2012a). Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa . BMC Microbiol 12:113 [View Article][PubMed]
    [Google Scholar]
  16. Filipiak W., Ruzsanyi V., Mochalski P., Filipiak A., Bajtarevic A., Ager C., Denz H., Hilbe W., Jamnig H. & other authors ( 2012b). Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res 6:036008 [View Article][PubMed]
    [Google Scholar]
  17. Gawryś M., Fastyn P., Gawlowski J., Gierczak T., Niedzielski J. ( 2001). Prevention of water vapour adsorption by carbon molecular sieves in sampling humid gases. J Chromatogr A 933:107–116 [View Article][PubMed]
    [Google Scholar]
  18. Goering R., Dockrell H., Zuckermann M., Wakelin D., Roitt I., Mims C., Chiodini P. ( 2008). Mims' Medical Microbiology Philadelphia: Elsevier;
    [Google Scholar]
  19. Hettinga K. A., van Valenberg H. J., Lam T. J., van Hooijdonk A. C. ( 2008). Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy Sci 91:3834–3839 [View Article][PubMed]
    [Google Scholar]
  20. Julák J., Stránská E., Rosová V., Geppert H., Spanel P., Smith D. ( 2006). Bronchoalveolar lavage examined by solid phase microextraction, gas chromatography–mass spectrometry and selected ion flow tube mass spectrometry. J Microbiol Methods 65:76–86 [View Article][PubMed]
    [Google Scholar]
  21. Kleinbaum D., Kupper L., Muller A., Nizam K. ( 1998). Applied Regression Analysis and Other Multivariable Methods Pacific Grove, CA: Brooks/Cole Publishing Company;
    [Google Scholar]
  22. Kushch I., Arendacká B., Stolc S., Mochalski P., Filipiak W., Schwarz K., Schwentner L., Schmid A., Dzien A. & other authors ( 2008). Breath isoprene–aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med 46:1011–1018 [View Article][PubMed]
    [Google Scholar]
  23. Liao C. C., Lee C. L., Chiang T. C., Lee S. C., Huang S. H., Tu T. C., Chen T. K., Wu C. H. ( 2002). The 13C-urea breath test to detect Helicobacter pylori infection: a validated simple methodology with 50 mg 13C-urea. Aliment Pharmacol Ther 16:787–792 [View Article][PubMed]
    [Google Scholar]
  24. O’Hara M., Mayhew C. A. ( 2009). A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res 3:027001 [View Article][PubMed]
    [Google Scholar]
  25. Preti G., Thaler E., Hanson C. W., Troy M., Eades J., Gelperin A. ( 2009). Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2011–2018 [View Article][PubMed]
    [Google Scholar]
  26. Refat M., Moore T. J., Kazui M., Risby T. H., Perman J. A., Schwarz K. B. ( 1991). Utility of breath ethane as a noninvasive biomarker of vitamin E status in children. Pediatr Res 30:396–403 [View Article][PubMed]
    [Google Scholar]
  27. Schöller C., Molin S., Wilkins K. ( 1997). Volatile metabolites from some Gram-negative bacteria. Chemosphere 35:1487–1495 [View Article][PubMed]
    [Google Scholar]
  28. Schwarz K. B., Cox J. M., Sharma S., Clement L., Humphrey J., Gleason C., Abbey H., Sehnert S. S., Risby T. H. ( 1997). Possible antioxidant effect of vitamin A supplementation in premature infants. J Pediatr Gastroenterol Nutr 25:408–414 [View Article][PubMed]
    [Google Scholar]
  29. Schwarz K., Filipiak W., Amann A. ( 2009a). Determining concentration patterns of volatile compounds in exhaled breath by PTR–MS. J Breath Res 3:027002 [View Article][PubMed]
    [Google Scholar]
  30. Schwarz K., Pizzini A., Arendacká B., Zerlauth K., Filipiak W., Schmid A., Dzien A., Neuner S., Lechleitner M. & other authors ( 2009b). Breath acetone – aspects of normal physiology related to age and gender as determined in a PTR–MS study. J Breath Res 3:027003 [View Article][PubMed]
    [Google Scholar]
  31. Scotter J. M., Allardyce R. A., Langford V. S., Hill A., Murdoch D. R. ( 2006). The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. J Microbiol Methods 65:628–631 [View Article][PubMed]
    [Google Scholar]
  32. Sponring A., Filipiak W., Mikoviny T., Ager C., Schubert J., Miekisch W., Amann A., Troppmair J. ( 2009). Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro . Anticancer Res 29:419–426[PubMed]
    [Google Scholar]
  33. Sponring A., Filipiak W., Ager C., Schubert J., Miekisch W., Amann A., Troppmair J. ( 2010). Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark 7:153–161[PubMed]
    [Google Scholar]
  34. Zechman J. M., Aldinger S., Labows J. N. Jr ( 1986). Characterization of pathogenic bacteria by automated headspace concentration–gas chromatography. J Chromatogr A 377:49–57[PubMed] [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.062687-0
Loading
/content/journal/micro/10.1099/mic.0.062687-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error