1887

Abstract

The IcsA (VirG) protein is a polarly distributed autotransporter protein. IcsA functions as a virulence factor by interacting with the host actin regulatory protein N-WASP, which in turn activates the Arp2/3 complex, initiating actin polymerization. Formation of F-actin comet tails allows bacterial cell-to-cell spreading. Although various accessory proteins such as periplasmic chaperones and the β-barrel assembly machine (BAM) complex have been shown to be involved in the export of IcsA, the IcsA translocation mechanism remains to be fully elucidated. A putative autochaperone (AC) region (amino acids 634–735) located at the C-terminal end of the IcsA passenger domain, which forms part of the self-associating autotransporter (SAAT) domain, has been suggested to be required for IcsA biogenesis, as well as for N-WASP recruitment, based on mutagenesis studies. IcsA proteins with linker insertion mutations within the AC region have a significant reduction in production and are defective in N-WASP recruitment when expressed in smooth LPS (S-LPS) . In this study, we have found that the LPS O antigen plays a role in IcsA production based on the use of an () mutant having rough LPS (R-LPS) and a novel assay in which O antigen is depleted using tunicamycin treatment and then regenerated. In addition, we have identified a new N-WASP binding/interaction site within the IcsA AC region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062471-0
2012-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2835.html?itemId=/content/journal/micro/10.1099/mic.0.062471-0&mimeType=html&fmt=ahah

References

  1. Alexander D. C., Valvano M. A.. ( 1994;). Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. . J Bacteriol 176:, 7079–7084.[PubMed]
    [Google Scholar]
  2. Baker S. J., Gunn J. S., Morona R.. ( 1999;). The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. . Microbiology 145:, 367–378. [CrossRef][PubMed]
    [Google Scholar]
  3. Bartolomé B., Jubete Y., Martínez E., de la Cruz F.. ( 1991;). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. . Gene 102:, 75–78. [CrossRef][PubMed]
    [Google Scholar]
  4. Bernardini M. L., Mounier J., d’Hauteville H., Coquis-Rondon M., Sansonetti P. J.. ( 1989;). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. . Proc Natl Acad Sci U S A 86:, 3867–3871. [CrossRef][PubMed]
    [Google Scholar]
  5. Bitto E., McKay D. B.. ( 2003;). The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. . J Biol Chem 278:, 49316–49322. [CrossRef][PubMed]
    [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Betlach M. C., Boyer H. W.. ( 1977;). Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. . Gene 2:, 75–91. [CrossRef][PubMed]
    [Google Scholar]
  7. Brandish P. E., Kimura K. I., Inukai M., Southgate R., Lonsdale J. T., Bugg T. D.. ( 1996;). Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. . Antimicrob Agents Chemother 40:, 1640–1644.[PubMed]
    [Google Scholar]
  8. Brandon L. D., Goldberg M. B.. ( 2001;). Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. . J Bacteriol 183:, 951–958. [CrossRef][PubMed]
    [Google Scholar]
  9. Brandon L. D., Goehring N., Janakiraman A., Yan A. W., Wu T., Beckwith J., Goldberg M. B.. ( 2003;). IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. . Mol Microbiol 50:, 45–60. [CrossRef][PubMed]
    [Google Scholar]
  10. d’Hauteville H., Dufourcq Lagelouse R., Nato F., Sansonetti P. J.. ( 1996;). Lack of cleavage of IcsA in Shigella flexneri causes aberrant movement and allows demonstration of a cross-reactive eukaryotic protein. . Infect Immun 64:, 511–517.[PubMed]
    [Google Scholar]
  11. Davison J., Heusterspreute M., Chevalier N., Ha-Thi V., Brunei F.. ( 1987;). Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. . Gene 51:, 275–280. [CrossRef][PubMed]
    [Google Scholar]
  12. Duguay A. R., Silhavy T. J.. ( 2004;). Quality control in the bacterial periplasm. . Biochim Biophys Acta 1694:, 121–134. [CrossRef][PubMed]
    [Google Scholar]
  13. Emsley P., Charles I. G., Fairweather N. F., Isaacs N. W.. ( 1996;). Structure of Bordetella pertussis virulence factor P.69 pertactin. . Nature 381:, 90–92. [CrossRef][PubMed]
    [Google Scholar]
  14. Fukuda I., Suzuki T., Munakata H., Hayashi N., Katayama E., Yoshikawa M., Sasakawa C.. ( 1995;). Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreading. . J Bacteriol 177:, 1719–1726.[PubMed]
    [Google Scholar]
  15. Goldberg M. B.. ( 2001;). Actin-based motility of intracellular microbial pathogens. . Microbiol Mol Biol Rev 65:, 595–626. [CrossRef][PubMed]
    [Google Scholar]
  16. Goldberg M. B., Barzu O., Parsot C., Sansonetti P. J.. ( 1993;). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. . Infect Agents Dis 2:, 210–211.[PubMed]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  18. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D.. ( 2004;). Type V protein secretion pathway: the autotransporter story. . Microbiol Mol Biol Rev 68:, 692–744. [CrossRef][PubMed]
    [Google Scholar]
  19. Ieva R., Bernstein H. D.. ( 2009;). Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. . Proc Natl Acad Sci U S A 106:, 19120–19125. [CrossRef][PubMed]
    [Google Scholar]
  20. Ieva R., Tian P., Peterson J. H., Bernstein H. D.. ( 2011;). Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. . Proc Natl Acad Sci U S A 108:, E383–E391. [CrossRef][PubMed]
    [Google Scholar]
  21. Jain S., Goldberg M. B.. ( 2007;). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. . J Bacteriol 189:, 5393–5398. [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson T. A., Qiu J., Plaut A. G., Holyoak T.. ( 2009;). Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease: the structure of Haemophilus influenzae immunoglobulin A1 protease. . J Mol Biol 389:, 559–574. [CrossRef][PubMed]
    [Google Scholar]
  23. Khan S., Mian H. S., Sandercock L. E., Chirgadze N. Y., Pai E. F.. ( 2011;). Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. . J Mol Biol 413:, 985–1000. [CrossRef][PubMed]
    [Google Scholar]
  24. Klemm P., Vejborg R. M., Sherlock O.. ( 2006;). Self-associating autotransporters, SAATs: functional and structural similarities. . Int J Med Microbiol 296:, 187–195. [CrossRef][PubMed]
    [Google Scholar]
  25. Kokotek W., Lotz W.. ( 1989;). Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. . Gene 84:, 467–471. [CrossRef][PubMed]
    [Google Scholar]
  26. Kolmar H., Waller P. R., Sauer R. T.. ( 1996;). The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. . J Bacteriol 178:, 5925–5929.[PubMed]
    [Google Scholar]
  27. Korndörfer I. P., Dommel M. K., Skerra A.. ( 2004;). Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. . Nat Struct Mol Biol 11:, 1015–1020. [CrossRef][PubMed]
    [Google Scholar]
  28. Kühnel K., Diezmann D.. ( 2011;). Crystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA. . J Bacteriol 193:, 2042–2045. [CrossRef][PubMed]
    [Google Scholar]
  29. Lett M. C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M.. ( 1989;). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the VirG protein and determination of the complete coding sequence. . J Bacteriol 171:, 353–359.[PubMed]
    [Google Scholar]
  30. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L.. ( 1975;). Electrophoretic resolution of the “major outer membrane protein” of Escherichia coli K12 into four bands. . FEBS Lett 58:, 254–258. [CrossRef][PubMed]
    [Google Scholar]
  31. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M.. ( 1986;). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. . Cell 46:, 551–555. [CrossRef][PubMed]
    [Google Scholar]
  32. May K. L., Morona R.. ( 2008;). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott–Aldrich syndrome protein. . J Bacteriol 190:, 4666–4676. [CrossRef][PubMed]
    [Google Scholar]
  33. May K. L., Grabowicz M., Polyak S. W., Morona R.. ( 2012;). Self-association of the Shigella flexneri IcsA autotransporter protein. . Microbiology 158:, 1874–1883. [CrossRef][PubMed]
    [Google Scholar]
  34. Meng G., Spahich N., Kenjale R., Waksman G., St Geme J. W. III. ( 2011;). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. . EMBO J 30:, 3864–3874. [CrossRef][PubMed]
    [Google Scholar]
  35. Miller J.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  36. Morona R., Van Den Bosch L.. ( 2003;). Lipopolysaccharide O antigen chains mask IcsA (VirG) in Shigella flexneri. . FEMS Microbiol Lett 221:, 173–180. [CrossRef][PubMed]
    [Google Scholar]
  37. Morona R., Mavris M., Fallarino A., Manning P. A.. ( 1994;). Characterization of the rfc region of Shigella flexneri. . J Bacteriol 176:, 733–747.[PubMed]
    [Google Scholar]
  38. Morona R., van den Bosch L., Manning P. A.. ( 1995;). Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. . J Bacteriol 177:, 1059–1068.[PubMed]
    [Google Scholar]
  39. Morona R., Daniels C., Van Den Bosch L.. ( 2003;). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. . Microbiology 149:, 925–939. [CrossRef][PubMed]
    [Google Scholar]
  40. Murray G. L., Attridge S. R., Morona R.. ( 2003;). Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. . Mol Microbiol 47:, 1395–1406. [CrossRef][PubMed]
    [Google Scholar]
  41. Mutalik V. K., Nonaka G., Ades S. E., Rhodius V. A., Gross C. A.. ( 2009;). Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. . J Bacteriol 191:, 7279–7287. [CrossRef][PubMed]
    [Google Scholar]
  42. Narita S., Tokuda H.. ( 2009;). Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. . FEBS Lett 583:, 2160–2164. [CrossRef][PubMed]
    [Google Scholar]
  43. Oliver D. C., Huang G., Fernandez R. C.. ( 2003a;). Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. . J Bacteriol 185:, 489–495. [CrossRef][PubMed]
    [Google Scholar]
  44. Oliver D. C., Huang G., Nodel E., Pleasance S., Fernandez R. C.. ( 2003b;). A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. . Mol Microbiol 47:, 1367–1383. [CrossRef][PubMed]
    [Google Scholar]
  45. Otto B. R., Sijbrandi R., Luirink J., Oudega B., Heddle J. G., Mizutani K., Park S. Y., Tame J. R.. ( 2005;). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. . J Biol Chem 280:, 17339–17345. [CrossRef][PubMed]
    [Google Scholar]
  46. Pallen M. J., Chaudhuri R. R., Henderson I. R.. ( 2003;). Genomic analysis of secretion systems. . Curr Opin Microbiol 6:, 519–527. [CrossRef][PubMed]
    [Google Scholar]
  47. Papadopoulos M., Morona R.. ( 2010;). Mutagenesis and chemical cross-linking suggest that Wzz dimer stability and oligomerization affect lipopolysaccharide O-antigen modal chain length control. . J Bacteriol 192:, 3385–3393. [CrossRef][PubMed]
    [Google Scholar]
  48. Peterson J. H., Tian P., Ieva R., Dautin N., Bernstein H. D.. ( 2010;). Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. . Proc Natl Acad Sci U S A 107:, 17739–17744. [CrossRef][PubMed]
    [Google Scholar]
  49. Philpott D. J., Edgeworth J. D., Sansonetti P. J.. ( 2000;). The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. . Philos Trans R Soc Lond B Biol Sci 355:, 575–586. [CrossRef][PubMed]
    [Google Scholar]
  50. Purdy G. E., Hong M., Payne S. M.. ( 2002;). Shigella flexneri DegP facilitates IcsA surface expression and is required for efficient intercellular spread. . Infect Immun 70:, 6355–6364. [CrossRef][PubMed]
    [Google Scholar]
  51. Purdy G. E., Fisher C. R., Payne S. M.. ( 2007;). IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. . J Bacteriol 189:, 5566–5573. [CrossRef][PubMed]
    [Google Scholar]
  52. Purins L., Van Den Bosch L., Richardson V., Morona R.. ( 2008;). Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2. . Microbiology 154:, 1104–1116. [CrossRef][PubMed]
    [Google Scholar]
  53. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. . Annu Rev Biochem 71:, 635–700. [CrossRef][PubMed]
    [Google Scholar]
  54. Raivio T. L., Silhavy T. J.. ( 2001;). Periplasmic stress and ECF sigma factors. . Annu Rev Microbiol 55:, 591–624. [CrossRef][PubMed]
    [Google Scholar]
  55. Reeves P. R., Hobbs M., Valvano M. A., Skurnik M., Whitfield C., Coplin D., Kido N., Klena J., Maskell D.. & other authors ( 1996;). Bacterial polysaccharide synthesis and gene nomenclature. . Trends Microbiol 4:, 495–503. [CrossRef][PubMed]
    [Google Scholar]
  56. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A.. ( 2006;). Conserved and variable functions of the σE stress response in related genomes. . PLoS Biol 4:, e2. [CrossRef][PubMed]
    [Google Scholar]
  57. Robbins J. R., Monack D., McCallum S. J., Vegas A., Pham E., Goldberg M. B., Theriot J. A.. ( 2001;). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. . Mol Microbiol 41:, 861–872. [CrossRef][PubMed]
    [Google Scholar]
  58. Ruiz N., Gronenberg L. S., Kahne D., Silhavy T. J.. ( 2008;). Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. . Proc Natl Acad Sci U S A 105:, 5537–5542. [CrossRef][PubMed]
    [Google Scholar]
  59. Ruiz N., Kahne D., Silhavy T. J.. ( 2009;). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. . Nat Rev Microbiol 7:, 677–683. [CrossRef][PubMed]
    [Google Scholar]
  60. Ruiz-Perez F., Henderson I. R., Leyton D. L., Rossiter A. E., Zhang Y., Nataro J. P.. ( 2009;). Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. . J Bacteriol 191:, 6571–6583. [CrossRef][PubMed]
    [Google Scholar]
  61. Ruiz-Perez F., Henderson I. R., Nataro J. P.. ( 2010;). Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. . Gut Microbes 1:, 339–344. [CrossRef][PubMed]
    [Google Scholar]
  62. Sandlin R. C., Lampel K. A., Keasler S. P., Goldberg M. B., Stolzer A. L., Maurelli A. T.. ( 1995;). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. . Infect Immun 63:, 229–237.[PubMed]
    [Google Scholar]
  63. Sansonetti P. J., Arondel J., Fontaine A., d’Hauteville H., Bernardini M. L.. ( 1991;). OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. . Vaccine 9:, 416–422. [CrossRef][PubMed]
    [Google Scholar]
  64. Sauri A., Soprova Z., Wickström D., de Gier J. W., Van der Schors R. C., Smit A. B., Jong W. S., Luirink J.. ( 2009;). The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. . Microbiology 155:, 3982–3991. [CrossRef][PubMed]
    [Google Scholar]
  65. Sklar J. G., Wu T., Kahne D., Silhavy T. J.. ( 2007;). Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. . Genes Dev 21:, 2473–2484. [CrossRef][PubMed]
    [Google Scholar]
  66. Soprova Z., Sauri A., van Ulsen P., Tame J. R., den Blaauwen T., Jong W. S., Luirink J.. ( 2010;). A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. . J Biol Chem 285:, 38224–38233. [CrossRef][PubMed]
    [Google Scholar]
  67. Sperandeo P., Lau F. K., Carpentieri A., De Castro C., Molinaro A., Dehò G., Silhavy T. J., Polissi A.. ( 2008;). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. . J Bacteriol 190:, 4460–4469. [CrossRef][PubMed]
    [Google Scholar]
  68. Spiess C., Beil A., Ehrmann M.. ( 1999;). A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. . Cell 97:, 339–347. [CrossRef][PubMed]
    [Google Scholar]
  69. Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R.. ( 1996;). Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. . Proc Natl Acad Sci U S A 93:, 10584–10588. [CrossRef][PubMed]
    [Google Scholar]
  70. Steinhauer J., Agha R., Pham T., Varga A. W., Goldberg M. B.. ( 1999;). The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. . Mol Microbiol 32:, 367–377. [CrossRef][PubMed]
    [Google Scholar]
  71. Suzuki T., Sasakawa C.. ( 2001;). Molecular basis of the intracellular spreading of Shigella. . Infect Immun 69:, 5959–5966. [CrossRef][PubMed]
    [Google Scholar]
  72. Suzuki T., Lett M.-C., Sasakawa C.. ( 1995;). Extracellular transport of VirG protein in Shigella. . J Biol Chem 270:, 30874–30880. [CrossRef][PubMed]
    [Google Scholar]
  73. Tran A. X., Dong C., Whitfield C.. ( 2010;). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. . J Biol Chem 285:, 33529–33539. [CrossRef][PubMed]
    [Google Scholar]
  74. Tsai C. M., Frasch C. E.. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. . Anal Biochem 119:, 115–119. [CrossRef][PubMed]
    [Google Scholar]
  75. Vaara M.. ( 1992;). Agents that increase the permeability of the outer membrane. . Microbiol Rev 56:, 395–411.[PubMed]
    [Google Scholar]
  76. Vaara M., Vaara T.. ( 1983;). Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. . Nature 303:, 526–528. [CrossRef][PubMed]
    [Google Scholar]
  77. Van Den Bosch L., Morona R.. ( 2003;). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. . Microb Pathog 35:, 11–18. [CrossRef][PubMed]
    [Google Scholar]
  78. Van Den Bosch L., Manning P. A., Morona R.. ( 1997;). Regulation of O-antigen chain length is required for Shigella flexneri virulence. . Mol Microbiol 23:, 765–775. [CrossRef][PubMed]
    [Google Scholar]
  79. Wagner J. K., Heindl J. E., Gray A. N., Jain S., Goldberg M. B.. ( 2009;). Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. . J Bacteriol 191:, 815–821. [CrossRef][PubMed]
    [Google Scholar]
  80. Walton T. A., Sousa M. C.. ( 2004;). Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. . Mol Cell 15:, 367–374. [CrossRef][PubMed]
    [Google Scholar]
  81. Walton T. A., Sandoval C. M., Fowler C. A., Pardi A., Sousa M. C.. ( 2009;). The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. . Proc Natl Acad Sci U S A 106:, 1772–1777. [CrossRef][PubMed]
    [Google Scholar]
  82. Wells T. J., Totsika M., Schembri M. A.. ( 2010;). Autotransporters of Escherichia coli: a sequence-based characterization. . Microbiology 156:, 2459–2469. [CrossRef][PubMed]
    [Google Scholar]
  83. Xu X., Wang S., Hu Y. X., McKay D. B.. ( 2007;). The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. . J Mol Biol 373:, 367–381. [CrossRef][PubMed]
    [Google Scholar]
  84. Yen Y. T., Kostakioti M., Henderson I. R., Stathopoulos C.. ( 2008;). Common themes and variations in serine protease autotransporters. . Trends Microbiol 16:, 370–379. [CrossRef][PubMed]
    [Google Scholar]
  85. Zalucki Y. M., Jennings M. P.. ( 2007;). Experimental confirmation of a key role for non-optimal codons in protein export. . Biochem Biophys Res Commun 355:, 143–148. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062471-0
Loading
/content/journal/micro/10.1099/mic.0.062471-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error