1887

Abstract

The IcsA (VirG) protein is a polarly distributed autotransporter protein. IcsA functions as a virulence factor by interacting with the host actin regulatory protein N-WASP, which in turn activates the Arp2/3 complex, initiating actin polymerization. Formation of F-actin comet tails allows bacterial cell-to-cell spreading. Although various accessory proteins such as periplasmic chaperones and the β-barrel assembly machine (BAM) complex have been shown to be involved in the export of IcsA, the IcsA translocation mechanism remains to be fully elucidated. A putative autochaperone (AC) region (amino acids 634–735) located at the C-terminal end of the IcsA passenger domain, which forms part of the self-associating autotransporter (SAAT) domain, has been suggested to be required for IcsA biogenesis, as well as for N-WASP recruitment, based on mutagenesis studies. IcsA proteins with linker insertion mutations within the AC region have a significant reduction in production and are defective in N-WASP recruitment when expressed in smooth LPS (S-LPS) . In this study, we have found that the LPS O antigen plays a role in IcsA production based on the use of an () mutant having rough LPS (R-LPS) and a novel assay in which O antigen is depleted using tunicamycin treatment and then regenerated. In addition, we have identified a new N-WASP binding/interaction site within the IcsA AC region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062471-0
2012-11-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2835.html?itemId=/content/journal/micro/10.1099/mic.0.062471-0&mimeType=html&fmt=ahah

References

  1. Alexander D. C., Valvano M. A.. ( 1994;). Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J Bacteriol176:7079–7084[PubMed]
    [Google Scholar]
  2. Baker S. J., Gunn J. S., Morona R.. ( 1999;). The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide. Microbiology145:367–378 [CrossRef][PubMed]
    [Google Scholar]
  3. Bartolomé B., Jubete Y., Martínez E., de la Cruz F.. ( 1991;). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene102:75–78 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernardini M. L., Mounier J., d’Hauteville H., Coquis-Rondon M., Sansonetti P. J.. ( 1989;). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A86:3867–3871 [CrossRef][PubMed]
    [Google Scholar]
  5. Bitto E., McKay D. B.. ( 2003;). The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J Biol Chem278:49316–49322 [CrossRef][PubMed]
    [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Betlach M. C., Boyer H. W.. ( 1977;). Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene2:75–91 [CrossRef][PubMed]
    [Google Scholar]
  7. Brandish P. E., Kimura K. I., Inukai M., Southgate R., Lonsdale J. T., Bugg T. D.. ( 1996;). Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother40:1640–1644[PubMed]
    [Google Scholar]
  8. Brandon L. D., Goldberg M. B.. ( 2001;). Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. J Bacteriol183:951–958 [CrossRef][PubMed]
    [Google Scholar]
  9. Brandon L. D., Goehring N., Janakiraman A., Yan A. W., Wu T., Beckwith J., Goldberg M. B.. ( 2003;). IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol Microbiol50:45–60 [CrossRef][PubMed]
    [Google Scholar]
  10. d’Hauteville H., Dufourcq Lagelouse R., Nato F., Sansonetti P. J.. ( 1996;). Lack of cleavage of IcsA in Shigella flexneri causes aberrant movement and allows demonstration of a cross-reactive eukaryotic protein. Infect Immun64:511–517[PubMed]
    [Google Scholar]
  11. Davison J., Heusterspreute M., Chevalier N., Ha-Thi V., Brunei F.. ( 1987;). Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene51:275–280 [CrossRef][PubMed]
    [Google Scholar]
  12. Duguay A. R., Silhavy T. J.. ( 2004;). Quality control in the bacterial periplasm. Biochim Biophys Acta1694:121–134 [CrossRef][PubMed]
    [Google Scholar]
  13. Emsley P., Charles I. G., Fairweather N. F., Isaacs N. W.. ( 1996;). Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature381:90–92 [CrossRef][PubMed]
    [Google Scholar]
  14. Fukuda I., Suzuki T., Munakata H., Hayashi N., Katayama E., Yoshikawa M., Sasakawa C.. ( 1995;). Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreading. J Bacteriol177:1719–1726[PubMed]
    [Google Scholar]
  15. Goldberg M. B.. ( 2001;). Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev65:595–626 [CrossRef][PubMed]
    [Google Scholar]
  16. Goldberg M. B., Barzu O., Parsot C., Sansonetti P. J.. ( 1993;). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. Infect Agents Dis2:210–211[PubMed]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  18. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D.. ( 2004;). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev68:692–744 [CrossRef][PubMed]
    [Google Scholar]
  19. Ieva R., Bernstein H. D.. ( 2009;). Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc Natl Acad Sci U S A106:19120–19125 [CrossRef][PubMed]
    [Google Scholar]
  20. Ieva R., Tian P., Peterson J. H., Bernstein H. D.. ( 2011;). Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc Natl Acad Sci U S A108:E383–E391 [CrossRef][PubMed]
    [Google Scholar]
  21. Jain S., Goldberg M. B.. ( 2007;). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol189:5393–5398 [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson T. A., Qiu J., Plaut A. G., Holyoak T.. ( 2009;). Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease: the structure of Haemophilus influenzae immunoglobulin A1 protease. J Mol Biol389:559–574 [CrossRef][PubMed]
    [Google Scholar]
  23. Khan S., Mian H. S., Sandercock L. E., Chirgadze N. Y., Pai E. F.. ( 2011;). Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J Mol Biol413:985–1000 [CrossRef][PubMed]
    [Google Scholar]
  24. Klemm P., Vejborg R. M., Sherlock O.. ( 2006;). Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol296:187–195 [CrossRef][PubMed]
    [Google Scholar]
  25. Kokotek W., Lotz W.. ( 1989;). Construction of a lacZ-kanamycin-resistance cassette, useful for site-directed mutagenesis and as a promoter probe. Gene84:467–471 [CrossRef][PubMed]
    [Google Scholar]
  26. Kolmar H., Waller P. R., Sauer R. T.. ( 1996;). The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J Bacteriol178:5925–5929[PubMed]
    [Google Scholar]
  27. Korndörfer I. P., Dommel M. K., Skerra A.. ( 2004;). Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol11:1015–1020 [CrossRef][PubMed]
    [Google Scholar]
  28. Kühnel K., Diezmann D.. ( 2011;). Crystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA. J Bacteriol193:2042–2045 [CrossRef][PubMed]
    [Google Scholar]
  29. Lett M. C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M.. ( 1989;). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the VirG protein and determination of the complete coding sequence. J Bacteriol171:353–359[PubMed]
    [Google Scholar]
  30. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L.. ( 1975;). Electrophoretic resolution of the “major outer membrane protein” of Escherichia coli K12 into four bands. FEBS Lett58:254–258 [CrossRef][PubMed]
    [Google Scholar]
  31. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M.. ( 1986;). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell46:551–555 [CrossRef][PubMed]
    [Google Scholar]
  32. May K. L., Morona R.. ( 2008;). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott–Aldrich syndrome protein. J Bacteriol190:4666–4676 [CrossRef][PubMed]
    [Google Scholar]
  33. May K. L., Grabowicz M., Polyak S. W., Morona R.. ( 2012;). Self-association of the Shigella flexneri IcsA autotransporter protein. Microbiology158:1874–1883 [CrossRef][PubMed]
    [Google Scholar]
  34. Meng G., Spahich N., Kenjale R., Waksman G., St Geme J. W. III. ( 2011;). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J30:3864–3874 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller J.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Morona R., Van Den Bosch L.. ( 2003;). Lipopolysaccharide O antigen chains mask IcsA (VirG) in Shigella flexneri. FEMS Microbiol Lett221:173–180 [CrossRef][PubMed]
    [Google Scholar]
  37. Morona R., Mavris M., Fallarino A., Manning P. A.. ( 1994;). Characterization of the rfc region of Shigella flexneri. J Bacteriol176:733–747[PubMed]
    [Google Scholar]
  38. Morona R., van den Bosch L., Manning P. A.. ( 1995;). Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol177:1059–1068[PubMed]
    [Google Scholar]
  39. Morona R., Daniels C., Van Den Bosch L.. ( 2003;). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology149:925–939 [CrossRef][PubMed]
    [Google Scholar]
  40. Murray G. L., Attridge S. R., Morona R.. ( 2003;). Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol47:1395–1406 [CrossRef][PubMed]
    [Google Scholar]
  41. Mutalik V. K., Nonaka G., Ades S. E., Rhodius V. A., Gross C. A.. ( 2009;). Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J Bacteriol191:7279–7287 [CrossRef][PubMed]
    [Google Scholar]
  42. Narita S., Tokuda H.. ( 2009;). Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett583:2160–2164 [CrossRef][PubMed]
    [Google Scholar]
  43. Oliver D. C., Huang G., Fernandez R. C.. ( 2003a;). Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J Bacteriol185:489–495 [CrossRef][PubMed]
    [Google Scholar]
  44. Oliver D. C., Huang G., Nodel E., Pleasance S., Fernandez R. C.. ( 2003b;). A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol47:1367–1383 [CrossRef][PubMed]
    [Google Scholar]
  45. Otto B. R., Sijbrandi R., Luirink J., Oudega B., Heddle J. G., Mizutani K., Park S. Y., Tame J. R.. ( 2005;). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J Biol Chem280:17339–17345 [CrossRef][PubMed]
    [Google Scholar]
  46. Pallen M. J., Chaudhuri R. R., Henderson I. R.. ( 2003;). Genomic analysis of secretion systems. Curr Opin Microbiol6:519–527 [CrossRef][PubMed]
    [Google Scholar]
  47. Papadopoulos M., Morona R.. ( 2010;). Mutagenesis and chemical cross-linking suggest that Wzz dimer stability and oligomerization affect lipopolysaccharide O-antigen modal chain length control. J Bacteriol192:3385–3393 [CrossRef][PubMed]
    [Google Scholar]
  48. Peterson J. H., Tian P., Ieva R., Dautin N., Bernstein H. D.. ( 2010;). Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci U S A107:17739–17744 [CrossRef][PubMed]
    [Google Scholar]
  49. Philpott D. J., Edgeworth J. D., Sansonetti P. J.. ( 2000;). The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos Trans R Soc Lond B Biol Sci355:575–586 [CrossRef][PubMed]
    [Google Scholar]
  50. Purdy G. E., Hong M., Payne S. M.. ( 2002;). Shigella flexneri DegP facilitates IcsA surface expression and is required for efficient intercellular spread. Infect Immun70:6355–6364 [CrossRef][PubMed]
    [Google Scholar]
  51. Purdy G. E., Fisher C. R., Payne S. M.. ( 2007;). IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol189:5566–5573 [CrossRef][PubMed]
    [Google Scholar]
  52. Purins L., Van Den Bosch L., Richardson V., Morona R.. ( 2008;). Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2. Microbiology154:1104–1116 [CrossRef][PubMed]
    [Google Scholar]
  53. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700 [CrossRef][PubMed]
    [Google Scholar]
  54. Raivio T. L., Silhavy T. J.. ( 2001;). Periplasmic stress and ECF sigma factors. Annu Rev Microbiol55:591–624 [CrossRef][PubMed]
    [Google Scholar]
  55. Reeves P. R., Hobbs M., Valvano M. A., Skurnik M., Whitfield C., Coplin D., Kido N., Klena J., Maskell D.. & other authors ( 1996;). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol4:495–503 [CrossRef][PubMed]
    [Google Scholar]
  56. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A.. ( 2006;). Conserved and variable functions of the σE stress response in related genomes. PLoS Biol4:e2 [CrossRef][PubMed]
    [Google Scholar]
  57. Robbins J. R., Monack D., McCallum S. J., Vegas A., Pham E., Goldberg M. B., Theriot J. A.. ( 2001;). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol Microbiol41:861–872 [CrossRef][PubMed]
    [Google Scholar]
  58. Ruiz N., Gronenberg L. S., Kahne D., Silhavy T. J.. ( 2008;). Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A105:5537–5542 [CrossRef][PubMed]
    [Google Scholar]
  59. Ruiz N., Kahne D., Silhavy T. J.. ( 2009;). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol7:677–683 [CrossRef][PubMed]
    [Google Scholar]
  60. Ruiz-Perez F., Henderson I. R., Leyton D. L., Rossiter A. E., Zhang Y., Nataro J. P.. ( 2009;). Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol191:6571–6583 [CrossRef][PubMed]
    [Google Scholar]
  61. Ruiz-Perez F., Henderson I. R., Nataro J. P.. ( 2010;). Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes1:339–344 [CrossRef][PubMed]
    [Google Scholar]
  62. Sandlin R. C., Lampel K. A., Keasler S. P., Goldberg M. B., Stolzer A. L., Maurelli A. T.. ( 1995;). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun63:229–237[PubMed]
    [Google Scholar]
  63. Sansonetti P. J., Arondel J., Fontaine A., d’Hauteville H., Bernardini M. L.. ( 1991;). OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine9:416–422 [CrossRef][PubMed]
    [Google Scholar]
  64. Sauri A., Soprova Z., Wickström D., de Gier J. W., Van der Schors R. C., Smit A. B., Jong W. S., Luirink J.. ( 2009;). The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology155:3982–3991 [CrossRef][PubMed]
    [Google Scholar]
  65. Sklar J. G., Wu T., Kahne D., Silhavy T. J.. ( 2007;). Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev21:2473–2484 [CrossRef][PubMed]
    [Google Scholar]
  66. Soprova Z., Sauri A., van Ulsen P., Tame J. R., den Blaauwen T., Jong W. S., Luirink J.. ( 2010;). A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J Biol Chem285:38224–38233 [CrossRef][PubMed]
    [Google Scholar]
  67. Sperandeo P., Lau F. K., Carpentieri A., De Castro C., Molinaro A., Dehò G., Silhavy T. J., Polissi A.. ( 2008;). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol190:4460–4469 [CrossRef][PubMed]
    [Google Scholar]
  68. Spiess C., Beil A., Ehrmann M.. ( 1999;). A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell97:339–347 [CrossRef][PubMed]
    [Google Scholar]
  69. Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R.. ( 1996;). Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A93:10584–10588 [CrossRef][PubMed]
    [Google Scholar]
  70. Steinhauer J., Agha R., Pham T., Varga A. W., Goldberg M. B.. ( 1999;). The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol32:367–377 [CrossRef][PubMed]
    [Google Scholar]
  71. Suzuki T., Sasakawa C.. ( 2001;). Molecular basis of the intracellular spreading of Shigella. Infect Immun69:5959–5966 [CrossRef][PubMed]
    [Google Scholar]
  72. Suzuki T., Lett M.-C., Sasakawa C.. ( 1995;). Extracellular transport of VirG protein in Shigella. J Biol Chem270:30874–30880 [CrossRef][PubMed]
    [Google Scholar]
  73. Tran A. X., Dong C., Whitfield C.. ( 2010;). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J Biol Chem285:33529–33539 [CrossRef][PubMed]
    [Google Scholar]
  74. Tsai C. M., Frasch C. E.. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119 [CrossRef][PubMed]
    [Google Scholar]
  75. Vaara M.. ( 1992;). Agents that increase the permeability of the outer membrane. Microbiol Rev56:395–411[PubMed]
    [Google Scholar]
  76. Vaara M., Vaara T.. ( 1983;). Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature303:526–528 [CrossRef][PubMed]
    [Google Scholar]
  77. Van Den Bosch L., Morona R.. ( 2003;). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog35:11–18 [CrossRef][PubMed]
    [Google Scholar]
  78. Van Den Bosch L., Manning P. A., Morona R.. ( 1997;). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol23:765–775 [CrossRef][PubMed]
    [Google Scholar]
  79. Wagner J. K., Heindl J. E., Gray A. N., Jain S., Goldberg M. B.. ( 2009;). Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. J Bacteriol191:815–821 [CrossRef][PubMed]
    [Google Scholar]
  80. Walton T. A., Sousa M. C.. ( 2004;). Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell15:367–374 [CrossRef][PubMed]
    [Google Scholar]
  81. Walton T. A., Sandoval C. M., Fowler C. A., Pardi A., Sousa M. C.. ( 2009;). The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. Proc Natl Acad Sci U S A106:1772–1777 [CrossRef][PubMed]
    [Google Scholar]
  82. Wells T. J., Totsika M., Schembri M. A.. ( 2010;). Autotransporters of Escherichia coli: a sequence-based characterization. Microbiology156:2459–2469 [CrossRef][PubMed]
    [Google Scholar]
  83. Xu X., Wang S., Hu Y. X., McKay D. B.. ( 2007;). The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J Mol Biol373:367–381 [CrossRef][PubMed]
    [Google Scholar]
  84. Yen Y. T., Kostakioti M., Henderson I. R., Stathopoulos C.. ( 2008;). Common themes and variations in serine protease autotransporters. Trends Microbiol16:370–379 [CrossRef][PubMed]
    [Google Scholar]
  85. Zalucki Y. M., Jennings M. P.. ( 2007;). Experimental confirmation of a key role for non-optimal codons in protein export. Biochem Biophys Res Commun355:143–148 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062471-0
Loading
/content/journal/micro/10.1099/mic.0.062471-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error