Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity Free

Abstract

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by Bacteria and some Archaea. The assessment of the toxic potential of antimicrobial peptides is important in order to apply these peptides on an industrial scale. The aim of the present study was to investigate the cytotoxic and haemolytic potential of bovicin HC5, as well as to determine whether cholesterol influences bacteriocin activity on model membranes. Nisin, for which the mechanism of action is well described, was used as a reference peptide in our assays. The viability of three distinct eukaryotic cell lines treated with bovicin HC5 or nisin was analysed by using the MTT assay and cellular morphological changes were determined by light microscopy. The haemolytic potential was evaluated by using the haemoglobin liberation assay and the role of cholesterol on bacteriocin activity was examined by using model membranes composed of DOPC (1,2-dioleoyl-

Funding
This study was supported by the:
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil)
  • Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, Brazil)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062190-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2851.html?itemId=/content/journal/micro/10.1099/mic.0.062190-0&mimeType=html&fmt=ahah

References

  1. Begde D., Bundale S., Mashitha P., Rudra J., Nashikkar N., Upadhyay A. ( 2011). Immunomodulatory efficacy of nisin–a bacterial lantibiotic peptide. J Pept Sci 17:438–444 [View Article] [PubMed]
    [Google Scholar]
  2. Benachir T., Monette M., Grenier J., Lafleur M. ( 1997). Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting. Eur Biophys J Biophys Lett 25:201–210 [View Article]
    [Google Scholar]
  3. Berridge V. M., Tan S. A. ( 1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondria electron transport in MTT reduction. Arch Biochem Biophys 303:474–482 [View Article]
    [Google Scholar]
  4. Brender J. R., McHenry A. J., Ramamoorthy A. ( 2012). Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides?. Front Immunol 3:195 [PubMed] [CrossRef]
    [Google Scholar]
  5. Breukink E., Wiedemann I., van Kraaij C., Kuipers O. P., Sahl H., de Kruijff B. ( 1999). Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364 [View Article] [PubMed]
    [Google Scholar]
  6. Breukink E., van Heusden H. E., Vollmerhaus P. J., Swiezewska E., Brunner L., Walker S., Heck A. J. R., de Kruijff B. ( 2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278:19898–19903 [View Article] [PubMed]
    [Google Scholar]
  7. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L. ( 2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20 [View Article] [PubMed]
    [Google Scholar]
  8. Fotakis G., Timbrell J. A. ( 2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177 [View Article] [PubMed]
    [Google Scholar]
  9. Hetz C., Bono M. R., Barros L. F., Lagos R. ( 2002). Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci U S A 99:2696–2701 [View Article] [PubMed]
    [Google Scholar]
  10. Hope M. J., Bally M. B., Webb G., Cullis P. R. ( 1985). Production of large unilamellar vesicles by a rapid extrusion procedure – characterization of size distribution, trapped volume and ability to maintain a membrane-potential. Biochim Biophys Acta 812:55–65 [View Article]
    [Google Scholar]
  11. Joerger R. D. ( 2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647 [PubMed] [CrossRef]
    [Google Scholar]
  12. Lewus C. B., Montville T. J. ( 1991). Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Methods 13:145–150 [View Article]
    [Google Scholar]
  13. Lima J. R., Ribon A. O., Russell J. B., Mantovani H. C. ( 2009). Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro . FEMS Microbiol Lett 292:78–84 [View Article] [PubMed]
    [Google Scholar]
  14. Maher S., McClean S. ( 2006). Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71:1289–1298 [View Article] [PubMed]
    [Google Scholar]
  15. Mantovani H. C., Russell J. B. ( 2003). Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5. Int J Food Microbiol 89:77–83 [View Article] [PubMed]
    [Google Scholar]
  16. Mantovani H. C., Hu H., Worobo R. W., Russell J. B. ( 2002). Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148:3347–3352 [PubMed]
    [Google Scholar]
  17. Mosmann T. ( 1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63 [View Article] [PubMed]
    [Google Scholar]
  18. Mouritsen O. G., Zuckermann M. J. ( 2004). What’s so special about cholesterol?. Lipids 39:1101–1113 [View Article] [PubMed]
    [Google Scholar]
  19. Paiva A. D., Breukink E., Mantovani H. C. ( 2011). Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother 55:5284–5293 [View Article] [PubMed]
    [Google Scholar]
  20. Paiva A. D., Irving N., Breukink E., Mantovani H. C. ( 2012). Interaction with lipid II induces conformational changes in bovicin HC5 structure. Antimicrob Agents Chemother 56:4586–4593 [View Article] [PubMed]
    [Google Scholar]
  21. Prenner E. J., Lewis R. N., Jelokhani-Niaraki M., Hodges R. S., McElhaney R. N. ( 2001). Cholesterol attenuates the interaction of the antimicrobial peptide gramicidin S with phospholipid bilayer membranes. Biochim Biophys Acta 1510:83–92 [View Article] [PubMed]
    [Google Scholar]
  22. Raghuraman H., Chattopadhyay A. ( 2004). Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87:2419–2432 [View Article] [PubMed]
    [Google Scholar]
  23. Raghuraman H., Chattopadhyay A. ( 2005). Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids 134:183–189 [View Article] [PubMed]
    [Google Scholar]
  24. Raghuraman H., Chattopadhyay A. ( 2007). Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophys J 92:1271–1283 [View Article] [PubMed]
    [Google Scholar]
  25. Reddy K. V. R., Yedery R. D., Aranha C. ( 2004). Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547 [View Article] [PubMed]
    [Google Scholar]
  26. Rouser G., Fleischer S., Yamamoto A. ( 1970). Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496 [View Article] [PubMed]
    [Google Scholar]
  27. Shin S. Y., Yang S.-T., Park E. J., Eom S. H., Song W. K., Kim J. I., Lee S.-H., Lee M. K., Lee D. G. & other authors ( 2001). Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. J Pept Res 58:504–514 [View Article] [PubMed]
    [Google Scholar]
  28. Tagg J. R., Dajani A. S., Wannamaker L. W. ( 1976). Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756 [PubMed]
    [Google Scholar]
  29. Thomson C. J., Power E., Ruebsamen-Waigmann H., Labischinski H. ( 2004). Antibacterial research and development in the 21st Century–an industry perspective of the challenges. Curr Opin Microbiol 7:445–450 [View Article] [PubMed]
    [Google Scholar]
  30. Todorov S. D., Wachsman M. B., Knoetze H., Meincken M., Dicks L. M. T. ( 2005). An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25:508–513 [View Article] [PubMed]
    [Google Scholar]
  31. Vaucher R. A., Teixeira M. L., Brandelli A. ( 2010). Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells. Curr Microbiol 60:1–5 [View Article] [PubMed]
    [Google Scholar]
  32. Verly R. M., Rodrigues M. A., Daghastanli K. R., Denadai A. M., Cuccovia I. M., Bloch C. Jr, Frézard F., Santoro M. M., Piló-Veloso D., Bemquerer M. P. ( 2008). Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29:15–24 [View Article] [PubMed]
    [Google Scholar]
  33. Wessman P., Strömstedt A. A., Malmsten M., Edwards K. ( 2008). Melittin-lipid bilayer interactions and the role of cholesterol. Biophys J 95:4324–4336 [View Article] [PubMed]
    [Google Scholar]
  34. Wu G. Q., Wu H. B., Fan X. B., Zhao R., Li X. F., Wang S. L., Ma Y. H., Shen Z. L., Xi T. ( 2010). Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides 31:1669–1673 [View Article] [PubMed]
    [Google Scholar]
  35. Zachowski A. ( 1993). Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294:1–14 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062190-0
Loading
/content/journal/micro/10.1099/mic.0.062190-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed