1887

Abstract

Cyclic-di-AMP (c-di-AMP) is an essential second messenger in , and depletion leads to defects in the integrity of the cell wall. Levels of c-di-AMP are regulated by both the rates of synthesis (by diadenylate cyclases) and the rates of degradation (by the GdpP phosphodiesterase, formerly YybT). Little is known about the regulation of expression or GdpP activity, but mutations that inactivate GdpP lead to high-level resistance to β-lactam antibiotics. Here we demonstrate that expression of is regulated by a -acting antisense RNA () . Transcription of this antisense RNA is initiated in the middle of the gene and is dependent on an alternative sigma factor, σ, previously associated with the expression of late flagellar genes, chemotaxis proteins and cell wall autolytic enzymes. Changes in σ activity can modulate GdpP protein levels by ~2.5-fold, which may provide a mechanism for the cell to upregulate c-di-AMP levels in coordination with the activation of autolytic enzymes.

Funding
This study was supported by the:
  • NIH (Award GM-047446)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062174-0
2012-11-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2732.html?itemId=/content/journal/micro/10.1099/mic.0.062174-0&mimeType=html&fmt=ahah

References

  1. Amati G., Bisicchia P., Galizzi A. ( 2004). DegU-P represses expression of the motility fla-che operon in Bacillus subtilis . J Bacteriol 186:6003–6014 [View Article] [PubMed]
    [Google Scholar]
  2. Bejerano-Sagie M., Oppenheimer-Shaanan Y., Berlatzky I., Rouvinski A., Meyerovich M., Ben-Yehuda S. ( 2006). A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis . Cell 125:679–690 [View Article] [PubMed]
    [Google Scholar]
  3. Blackman S. A., Smith T. J., Foster S. J. ( 1998). The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:73–82 [View Article] [PubMed]
    [Google Scholar]
  4. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R. ( 2006). A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238 [View Article] [PubMed]
    [Google Scholar]
  5. Bsat N., Chen L., Helmann J. D. ( 1996). Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586 [PubMed]
    [Google Scholar]
  6. Calvio C., Osera C., Amati G., Galizzi A. ( 2008). Autoregulation of swrAA and motility in Bacillus subtilis . J Bacteriol 190:5720–5728 [View Article] [PubMed]
    [Google Scholar]
  7. Cao M., Kobel P. A., Morshedi M. M., Wu M. F., Paddon C., Helmann J. D. ( 2002). Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457 [View Article] [PubMed]
    [Google Scholar]
  8. Caramori T., Barilla D., Nessi C., Sacchi L., Galizzi A. ( 1996). Role of FlgM in σD-dependent gene expression in Bacillus subtilis . J Bacteriol 178:3113–3118 [PubMed]
    [Google Scholar]
  9. Chaudhuri R. R., Allen A. G., Owen P. J., Shalom G., Stone K., Harrison M., Burgis T. A., Lockyer M., Garcia-Lara J. & other authors ( 2009). Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10:291 [View Article] [PubMed]
    [Google Scholar]
  10. Corrigan R. M., Abbott J. C., Burhenne H., Kaever V., Gründling A. ( 2011). c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217 [View Article] [PubMed]
    [Google Scholar]
  11. Cozy L. M., Kearns D. B. ( 2010). Gene position in a long operon governs motility development in Bacillus subtilis . Mol Microbiol 76:273–285 [View Article] [PubMed]
    [Google Scholar]
  12. Cozy L. M., Phillips A. M., Calvo R. A., Bate A. R., Hsueh Y. H., Bonneau R., Eichenberger P., Kearns D. B. ( 2012). SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σD in Bacillus subtilis . Mol Microbiol 83:1210–1228 [View Article] [PubMed]
    [Google Scholar]
  13. Eiamphungporn W., Helmann J. D. ( 2008). The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol Microbiol 67:830–848 [PubMed] [CrossRef]
    [Google Scholar]
  14. Eiamphungporn W., Helmann J. D. ( 2009). Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J Bacteriol 191:1101–1105 [PubMed] [CrossRef]
    [Google Scholar]
  15. Fredrick K., Helmann J. D. ( 1996). FlgM is a primary regulator of σD activity, and its absence restores motility to a sinR mutant. J Bacteriol 178:7010–7013 [PubMed]
    [Google Scholar]
  16. French C. T., Lao P., Loraine A. E., Matthews B. T., Yu H., Dybvig K. ( 2008). Large-scale transposon mutagenesis of Mycoplasma pulmonis . Mol Microbiol 69:67–76 [View Article] [PubMed]
    [Google Scholar]
  17. Gaballa A., Baysse C., Koedam N., Muyldermans S., Cornelis P. ( 1998). Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol 30:547–555 [View Article] [PubMed]
    [Google Scholar]
  18. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K. B., Smaldone G. T., Helmann J. D. ( 2008). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105:11927–11932 [PubMed] [CrossRef]
    [Google Scholar]
  19. Georg J., Hess W. R. ( 2011). cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75:286–300 [View Article] [PubMed]
    [Google Scholar]
  20. Girish V., Vijayalakshmi A. ( 2004). Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41:47 [PubMed]
    [Google Scholar]
  21. Glass J. I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M. R., Maruf M., Hutchison C. A. III, Smith H. O., Venter J. C. ( 2006). Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430 [View Article] [PubMed]
    [Google Scholar]
  22. Guérout-Fleury A. M., Frandsen N., Stragier P. ( 1996). Plasmids for ectopic integration in Bacillus subtilis . Gene 180:57–61 [View Article] [PubMed]
    [Google Scholar]
  23. Harwood C. R., Cutting S. M. ( 1990). Molecular Biological Methods for Bacillus New York: Wiley;
    [Google Scholar]
  24. Helmann J. D., Márquez L. M., Chamberlin M. J. ( 1988). Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574 [PubMed]
    [Google Scholar]
  25. Hengge R. ( 2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273 [View Article] [PubMed]
    [Google Scholar]
  26. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. ( 1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [View Article] [PubMed]
    [Google Scholar]
  27. Hsueh Y. H., Cozy L. M., Sham L. T., Calvo R. A., Gutu A. D., Winkler M. E., Kearns D. B. ( 2011). DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis . Mol Microbiol 81:1092–1108 [View Article] [PubMed]
    [Google Scholar]
  28. Irnov I., Sharma C. M., Vogel J., Winkler W. C. ( 2010). Identification of regulatory RNAs in Bacillus subtilis . Nucleic Acids Res 38:6637–6651 [View Article] [PubMed]
    [Google Scholar]
  29. Jahn N., Preis H., Wiedemann C., Brantl S. ( 2012). BsrG/SR4 from Bacillus subtilis – the first temperature-dependent type I toxin–antitoxin system. Mol Microbiol 83:579–598 [PubMed] [CrossRef]
    [Google Scholar]
  30. Kearns D. B., Losick R. ( 2005). Cell population heterogeneity during growth of Bacillus subtilis . Genes Dev 19:3083–3094 [View Article] [PubMed]
    [Google Scholar]
  31. Kingston A. W., Subramanian C., Rock C. O., Helmann J. D. ( 2011). A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Mol Microbiol 81:69–79 [View Article] [PubMed]
    [Google Scholar]
  32. Lazarevic V., Margot P., Soldo B., Karamata D. ( 1992). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961 [View Article] [PubMed]
    [Google Scholar]
  33. Luo Y., Helmann J. D. ( 2012). Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83:623–639 [PubMed] [CrossRef]
    [Google Scholar]
  34. Luo Y., Asai K., Sadaie Y., Helmann J. D. ( 2010). Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors. J Bacteriol 192:5736–5745 [View Article] [PubMed]
    [Google Scholar]
  35. Margot P., Mauël C., Karamata D. ( 1994). The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545 [View Article] [PubMed]
    [Google Scholar]
  36. Margot P., Pagni M., Karamata D. ( 1999). Bacillus subtilis 168 gene lytF encodes a γ-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative σ factor, σD . Microbiology 145:57–65 [View Article] [PubMed]
    [Google Scholar]
  37. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D. ( 2003). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604 [PubMed] [CrossRef]
    [Google Scholar]
  38. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M. & other authors ( 2012). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis . Science 335:1103–1106 [View Article] [PubMed]
    [Google Scholar]
  40. Oppenheimer-Shaanan Y., Wexselblatt E., Katzhendler J., Yavin E., Ben-Yehuda S. ( 2011). c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis . EMBO Rep 12:594–601 [View Article] [PubMed]
    [Google Scholar]
  41. Patrick J. E., Kearns D. B. ( 2009). Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J Bacteriol 191:7129–7133 [View Article] [PubMed]
    [Google Scholar]
  42. Preis H., Eckart R. A., Gudipati R. K., Heidrich N., Brantl S. ( 2009). CodY activates transcription of a small RNA in Bacillus subtilis . J Bacteriol 191:5446–5457 [PubMed] [CrossRef]
    [Google Scholar]
  43. Rao F., See R. Y., Zhang D., Toh D. C., Ji Q., Liang Z. X. ( 2010). YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem 285:473–482 [View Article] [PubMed]
    [Google Scholar]
  44. Rao F., Ji Q., Soehano I., Liang Z. X. ( 2011). Unusual heme-binding PAS domain from YybT family proteins. J Bacteriol 193:1543–1551 [View Article] [PubMed]
    [Google Scholar]
  45. Rasmussen S., Nielsen H. B., Jarmer H. ( 2009). The transcriptionally active regions in the genome of Bacillus subtilis . Mol Microbiol 73:1043–1057 [PubMed] [CrossRef]
    [Google Scholar]
  46. Romero D., Aguilar C., Losick R., Kolter R. ( 2010). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–2234 [View Article] [PubMed]
    [Google Scholar]
  47. Römling U. ( 2008). Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal 1:pe39 [View Article] [PubMed]
    [Google Scholar]
  48. Serizawa M., Yamamoto H., Yamaguchi H., Fujita Y., Kobayashi K., Ogasawara N., Sekiguchi J. ( 2004). Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. Gene 329:125–136 [View Article] [PubMed]
    [Google Scholar]
  49. Sierro N., Makita Y., de Hoon M., Nakai K. ( 2008). DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36:Database issueD93–D96 [PubMed] [CrossRef]
    [Google Scholar]
  50. Silvaggi J. M., Perkins J. B., Losick R. ( 2005). Small untranslated RNA antitoxin in Bacillus subtilis . J Bacteriol 187:6641–6650 [View Article] [PubMed]
    [Google Scholar]
  51. Song J. H., Ko K. S., Lee J. Y., Baek J. Y., Oh W. S., Yoon H. S., Jeong J. Y., Chun J. ( 2005). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19:365–374 [PubMed]
    [Google Scholar]
  52. Thomason M. K., Storz G. ( 2010). Bacterial antisense RNAs: how many are there, and what are they doing?. Annu Rev Genet 44:167–188 [View Article] [PubMed]
    [Google Scholar]
  53. Tsukahara K., Ogura M. ( 2008). Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB . BMC Microbiol 8:8 [View Article] [PubMed]
    [Google Scholar]
  54. Vagner V., Dervyn E., Ehrlich S. D. ( 1998). A vector for systematic gene inactivation in Bacillus subtilis . Microbiology 144:3097–3104 [PubMed] [CrossRef]
    [Google Scholar]
  55. Witte G., Hartung S., Büttner K., Hopfner K. P. ( 2008). Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30:167–178 [PubMed] [CrossRef]
    [Google Scholar]
  56. Woodward J. J., Iavarone A. T., Portnoy D. A. ( 2010). c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705 [View Article] [PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.062174-0
Loading
/content/journal/micro/10.1099/mic.0.062174-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error