1887

Abstract

Cyclic-di-AMP (c-di-AMP) is an essential second messenger in , and depletion leads to defects in the integrity of the cell wall. Levels of c-di-AMP are regulated by both the rates of synthesis (by diadenylate cyclases) and the rates of degradation (by the GdpP phosphodiesterase, formerly YybT). Little is known about the regulation of expression or GdpP activity, but mutations that inactivate GdpP lead to high-level resistance to β-lactam antibiotics. Here we demonstrate that expression of is regulated by a -acting antisense RNA () . Transcription of this antisense RNA is initiated in the middle of the gene and is dependent on an alternative sigma factor, σ, previously associated with the expression of late flagellar genes, chemotaxis proteins and cell wall autolytic enzymes. Changes in σ activity can modulate GdpP protein levels by ~2.5-fold, which may provide a mechanism for the cell to upregulate c-di-AMP levels in coordination with the activation of autolytic enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062174-0
2012-11-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2732.html?itemId=/content/journal/micro/10.1099/mic.0.062174-0&mimeType=html&fmt=ahah

References

  1. Amati G., Bisicchia P., Galizzi A.. ( 2004;). DegU-P represses expression of the motility fla-che operon in Bacillus subtilis . J Bacteriol186:6003–6014 [CrossRef][PubMed]
    [Google Scholar]
  2. Bejerano-Sagie M., Oppenheimer-Shaanan Y., Berlatzky I., Rouvinski A., Meyerovich M., Ben-Yehuda S.. ( 2006;). A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis . Cell125:679–690 [CrossRef][PubMed]
    [Google Scholar]
  3. Blackman S. A., Smith T. J., Foster S. J.. ( 1998;). The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology144:73–82 [CrossRef][PubMed]
    [Google Scholar]
  4. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R.. ( 2006;). A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol59:1229–1238 [CrossRef][PubMed]
    [Google Scholar]
  5. Bsat N., Chen L., Helmann J. D.. ( 1996;). Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol178:6579–6586[PubMed]
    [Google Scholar]
  6. Calvio C., Osera C., Amati G., Galizzi A.. ( 2008;). Autoregulation of swrAA and motility in Bacillus subtilis . J Bacteriol190:5720–5728 [CrossRef][PubMed]
    [Google Scholar]
  7. Cao M., Kobel P. A., Morshedi M. M., Wu M. F., Paddon C., Helmann J. D.. ( 2002;). Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol316:443–457 [CrossRef][PubMed]
    [Google Scholar]
  8. Caramori T., Barilla D., Nessi C., Sacchi L., Galizzi A.. ( 1996;). Role of FlgM in σD-dependent gene expression in Bacillus subtilis . J Bacteriol178:3113–3118[PubMed]
    [Google Scholar]
  9. Chaudhuri R. R., Allen A. G., Owen P. J., Shalom G., Stone K., Harrison M., Burgis T. A., Lockyer M., Garcia-Lara J.. & other authors ( 2009;). Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics10:291 [CrossRef][PubMed]
    [Google Scholar]
  10. Corrigan R. M., Abbott J. C., Burhenne H., Kaever V., Gründling A.. ( 2011;). c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog7:e1002217 [CrossRef][PubMed]
    [Google Scholar]
  11. Cozy L. M., Kearns D. B.. ( 2010;). Gene position in a long operon governs motility development in Bacillus subtilis . Mol Microbiol76:273–285 [CrossRef][PubMed]
    [Google Scholar]
  12. Cozy L. M., Phillips A. M., Calvo R. A., Bate A. R., Hsueh Y. H., Bonneau R., Eichenberger P., Kearns D. B.. ( 2012;). SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σD in Bacillus subtilis . Mol Microbiol83:1210–1228 [CrossRef][PubMed]
    [Google Scholar]
  13. Eiamphungporn W., Helmann J. D.. ( 2008;). The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol Microbiol67:830–848[PubMed][CrossRef]
    [Google Scholar]
  14. Eiamphungporn W., Helmann J. D.. ( 2009;). Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J Bacteriol191:1101–1105[PubMed][CrossRef]
    [Google Scholar]
  15. Fredrick K., Helmann J. D.. ( 1996;). FlgM is a primary regulator of σD activity, and its absence restores motility to a sinR mutant. J Bacteriol178:7010–7013[PubMed]
    [Google Scholar]
  16. French C. T., Lao P., Loraine A. E., Matthews B. T., Yu H., Dybvig K.. ( 2008;). Large-scale transposon mutagenesis of Mycoplasma pulmonis . Mol Microbiol69:67–76 [CrossRef][PubMed]
    [Google Scholar]
  17. Gaballa A., Baysse C., Koedam N., Muyldermans S., Cornelis P.. ( 1998;). Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol30:547–555 [CrossRef][PubMed]
    [Google Scholar]
  18. Gaballa A., Antelmann H., Aguilar C., Khakh S. K., Song K. B., Smaldone G. T., Helmann J. D.. ( 2008;). The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A105:11927–11932[PubMed][CrossRef]
    [Google Scholar]
  19. Georg J., Hess W. R.. ( 2011;). cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev75:286–300 [CrossRef][PubMed]
    [Google Scholar]
  20. Girish V., Vijayalakshmi A.. ( 2004;). Affordable image analysis using NIH Image/ImageJ. Indian J Cancer41:47[PubMed]
    [Google Scholar]
  21. Glass J. I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M. R., Maruf M., Hutchison C. A. III, Smith H. O., Venter J. C.. ( 2006;). Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A103:425–430 [CrossRef][PubMed]
    [Google Scholar]
  22. Guérout-Fleury A. M., Frandsen N., Stragier P.. ( 1996;). Plasmids for ectopic integration in Bacillus subtilis . Gene180:57–61 [CrossRef][PubMed]
    [Google Scholar]
  23. Harwood C. R., Cutting S. M.. ( 1990;). Molecular Biological Methods for Bacillus New York: Wiley;
    [Google Scholar]
  24. Helmann J. D., Márquez L. M., Chamberlin M. J.. ( 1988;). Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J Bacteriol170:1568–1574[PubMed]
    [Google Scholar]
  25. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  26. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  27. Hsueh Y. H., Cozy L. M., Sham L. T., Calvo R. A., Gutu A. D., Winkler M. E., Kearns D. B.. ( 2011;). DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis . Mol Microbiol81:1092–1108 [CrossRef][PubMed]
    [Google Scholar]
  28. Irnov I., Sharma C. M., Vogel J., Winkler W. C.. ( 2010;). Identification of regulatory RNAs in Bacillus subtilis . Nucleic Acids Res38:6637–6651 [CrossRef][PubMed]
    [Google Scholar]
  29. Jahn N., Preis H., Wiedemann C., Brantl S.. ( 2012;). BsrG/SR4 from Bacillus subtilis – the first temperature-dependent type I toxin–antitoxin system. Mol Microbiol83:579–598[PubMed][CrossRef]
    [Google Scholar]
  30. Kearns D. B., Losick R.. ( 2005;). Cell population heterogeneity during growth of Bacillus subtilis . Genes Dev19:3083–3094 [CrossRef][PubMed]
    [Google Scholar]
  31. Kingston A. W., Subramanian C., Rock C. O., Helmann J. D.. ( 2011;). A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Mol Microbiol81:69–79 [CrossRef][PubMed]
    [Google Scholar]
  32. Lazarevic V., Margot P., Soldo B., Karamata D.. ( 1992;). Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol138:1949–1961 [CrossRef][PubMed]
    [Google Scholar]
  33. Luo Y., Helmann J. D.. ( 2012;). Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol83:623–639[PubMed][CrossRef]
    [Google Scholar]
  34. Luo Y., Asai K., Sadaie Y., Helmann J. D.. ( 2010;). Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors. J Bacteriol192:5736–5745 [CrossRef][PubMed]
    [Google Scholar]
  35. Margot P., Mauël C., Karamata D.. ( 1994;). The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol12:535–545 [CrossRef][PubMed]
    [Google Scholar]
  36. Margot P., Pagni M., Karamata D.. ( 1999;). Bacillus subtilis 168 gene lytF encodes a γ-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative σ factor, σD . Microbiology145:57–65 [CrossRef][PubMed]
    [Google Scholar]
  37. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D.. ( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604[PubMed][CrossRef]
    [Google Scholar]
  38. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M.. & other authors ( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis . Science335:1103–1106 [CrossRef][PubMed]
    [Google Scholar]
  40. Oppenheimer-Shaanan Y., Wexselblatt E., Katzhendler J., Yavin E., Ben-Yehuda S.. ( 2011;). c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis . EMBO Rep12:594–601 [CrossRef][PubMed]
    [Google Scholar]
  41. Patrick J. E., Kearns D. B.. ( 2009;). Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J Bacteriol191:7129–7133 [CrossRef][PubMed]
    [Google Scholar]
  42. Preis H., Eckart R. A., Gudipati R. K., Heidrich N., Brantl S.. ( 2009;). CodY activates transcription of a small RNA in Bacillus subtilis . J Bacteriol191:5446–5457[PubMed][CrossRef]
    [Google Scholar]
  43. Rao F., See R. Y., Zhang D., Toh D. C., Ji Q., Liang Z. X.. ( 2010;). YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem285:473–482 [CrossRef][PubMed]
    [Google Scholar]
  44. Rao F., Ji Q., Soehano I., Liang Z. X.. ( 2011;). Unusual heme-binding PAS domain from YybT family proteins. J Bacteriol193:1543–1551 [CrossRef][PubMed]
    [Google Scholar]
  45. Rasmussen S., Nielsen H. B., Jarmer H.. ( 2009;). The transcriptionally active regions in the genome of Bacillus subtilis . Mol Microbiol73:1043–1057[PubMed][CrossRef]
    [Google Scholar]
  46. Romero D., Aguilar C., Losick R., Kolter R.. ( 2010;). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A107:2230–2234 [CrossRef][PubMed]
    [Google Scholar]
  47. Römling U.. ( 2008;). Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal1:pe39 [CrossRef][PubMed]
    [Google Scholar]
  48. Serizawa M., Yamamoto H., Yamaguchi H., Fujita Y., Kobayashi K., Ogasawara N., Sekiguchi J.. ( 2004;). Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. Gene329:125–136 [CrossRef][PubMed]
    [Google Scholar]
  49. Sierro N., Makita Y., de Hoon M., Nakai K.. ( 2008;). DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res36:Database issueD93–D96[PubMed][CrossRef]
    [Google Scholar]
  50. Silvaggi J. M., Perkins J. B., Losick R.. ( 2005;). Small untranslated RNA antitoxin in Bacillus subtilis . J Bacteriol187:6641–6650 [CrossRef][PubMed]
    [Google Scholar]
  51. Song J. H., Ko K. S., Lee J. Y., Baek J. Y., Oh W. S., Yoon H. S., Jeong J. Y., Chun J.. ( 2005;). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells19:365–374[PubMed]
    [Google Scholar]
  52. Thomason M. K., Storz G.. ( 2010;). Bacterial antisense RNAs: how many are there, and what are they doing?. Annu Rev Genet44:167–188 [CrossRef][PubMed]
    [Google Scholar]
  53. Tsukahara K., Ogura M.. ( 2008;). Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB . BMC Microbiol8:8 [CrossRef][PubMed]
    [Google Scholar]
  54. Vagner V., Dervyn E., Ehrlich S. D.. ( 1998;). A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104[PubMed][CrossRef]
    [Google Scholar]
  55. Witte G., Hartung S., Büttner K., Hopfner K. P.. ( 2008;). Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell30:167–178[PubMed][CrossRef]
    [Google Scholar]
  56. Woodward J. J., Iavarone A. T., Portnoy D. A.. ( 2010;). c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science328:1703–1705 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062174-0
Loading
/content/journal/micro/10.1099/mic.0.062174-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error