1887

Abstract

The genetic basis of the biosynthesis of the germination-arrest factor (GAF) produced by WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated here. In addition to inhibiting the germination of a wide range of grassy weeds, GAF exhibits a selective antimicrobial activity against the bacterial plant pathogen . We utilized the response of to GAF as a rapid screen for loss-of-function GAF phenotypes generated by transposon mutagenesis. A Tn mutant library consisting of 6364 WH6 transformants was screened in this assay, resulting in the identification of 18 non-redundant transposon insertion sites that led to loss of GAF production in WH6, as confirmed by TLC analysis. These insertions mapped to five different genes and four intergenic regions. Three of these genes, including two putative regulatory genes ( and homologues), were clustered in a 13 kb chromosomal region containing 13 putative ORFs. A GAF mutation identified previously as affecting an aminotransferase also maps to this region. We suggest that three of the genes in this region (a carbamoyltransferase, an aminotransferase and a formyltransferase) encode the enzymes necessary to synthesize dihydroGAF, the putative immediate precursor of GAF in a proposed GAF biosynthetic pathway. RT-qPCR analyses demonstrated that mutations in the and regulatory genes, as well as in a homologue identified earlier as controlling GAF formation, suppressed transcription of at least two of the putative GAF biosynthetic genes (encoding the aminotransferase and formyltransferase) located in this 13 kb region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062166-0
2013-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/36.html?itemId=/content/journal/micro/10.1099/mic.0.062166-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Armstrong D., Azevedo M., Mills D., Bailey B., Russell B., Groenig A., Halgren A., Banowetz G., McPhail K.. ( 2009;). Germination-arrest factor (GAF): 3. Determination that the herbicidal activity of GAF is associated with a ninhydrin-reactive compound and counteracted by selected amino acids. . Biol Control 51:, 181–190. [CrossRef]
    [Google Scholar]
  3. Banowetz G. M., Azevedo M. D., Armstrong D. J., Halgren A. B., Mills D. I.. ( 2008;). Germination-arrest factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. . Biol Control 46:, 380–390. [CrossRef]
    [Google Scholar]
  4. Banowetz G. M., Azevedo M. D., Armstrong D. J., Mills D. I.. ( 2009;). Germination arrest factor (GAF): part 2. Physical and chemical properties of a novel, naturally occurring herbicide produced by Pseudomonas fluorescens strain WH6. . Biol Control 50:, 103–110. [CrossRef]
    [Google Scholar]
  5. Berkowitz D. B., Charette B. D., Karukurichi K. R., McFadden I. M.. ( 2006;). α-Vinylic amino acids: occurrence, asymmetric synthesis, and biochemical mechanisms. . Tetrahedron Asymmetry 17:, 869–882. [CrossRef]
    [Google Scholar]
  6. Burger M., Woods R. G., McCarthy C., Beacham I. R.. ( 2000;). Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. . Microbiology 146:, 3149–3155.[PubMed]
    [Google Scholar]
  7. Elliott L. F., Azevedo M. D., Mueller-Warrant G. W., Horwath W. R.. ( 1998;). Weed control with rhizobacteria. . Soil Sci Agrochemi Ecol 33:, 3–7.
    [Google Scholar]
  8. Fernández M., Cuadrado Y., Aparicio J. F., Martín J. F.. ( 2004;). Role of homoserine and threonine pathway intermediates as precursors for the biosynthesis of aminoethoxyvinylglycine in Streptomyces sp. NRRL 5331. . Microbiology 150:, 1467–1474. [CrossRef][PubMed]
    [Google Scholar]
  9. Gooderham W. J., Gellatly S. L., Sanschagrin F., McPhee J. B., Bains M., Cosseau C., Levesque R. C., Hancock R. E. W.. ( 2009;). The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. . Microbiology 155:, 699–711. [CrossRef][PubMed]
    [Google Scholar]
  10. Halgren A., Azevedo M., Mills D., Armstrong D., Thimmaiah M., McPhail K., Banowetz G.. ( 2011;). Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. . J Appl Microbiol 111:, 949–959. [CrossRef][PubMed]
    [Google Scholar]
  11. Haydon D. J., Guest J. R.. ( 1991;). A new family of bacterial regulatory proteins. . FEMS Microbiol Lett 79:, 291–296. [CrossRef][PubMed]
    [Google Scholar]
  12. Hoskisson P. A., Rigali S.. ( 2009;). Chapter 1 variation in form and function: the helix-turn-helix regulators of the GntR superfamily. . Adv Appl Microbiol 69:, 1–22. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimbrel J. A., Givan S. A., Halgren A. B., Creason A. L., Mills D. I., Banowetz G. M., Armstrong D. J., Chang J. H.. ( 2010;). An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. . BMC Genomics 11:, 522–526. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee X., Fox A., Sufrin J., Henry H., Majcherczyk P., Haas D., Reimmann C.. ( 2010;). Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid. . J Bacteriol 192:, 4251–4255. [CrossRef][PubMed]
    [Google Scholar]
  15. Lewenza S., Falsafi R. K., Winsor G., Gooderham W. J., McPhee J. B., Brinkman F. S. L., Hancock R. E. W.. ( 2005;). Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. . Genome Res 15:, 583–589. [CrossRef][PubMed]
    [Google Scholar]
  16. Matthysse A. G., Stretton S., Dandie C., McClure N. C., Goodman A. E.. ( 1996;). Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coli. . FEMS Microbiol Lett 145:, 87–94. [CrossRef][PubMed]
    [Google Scholar]
  17. McPhail K. L., Armstrong D. J., Azevedo M. D., Banowetz G. M., Mills D. I.. ( 2010;). 4-Formylaminooxyvinylglycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. . J Nat Prod 73:, 1853–1857. [CrossRef][PubMed]
    [Google Scholar]
  18. Miersch J.. ( 1967;). [Detection and isolation of canaline (2-amino-4-aminohydroxybutyric acid)]. . Naturwissenschaften 54:, 169–170 (in German). [CrossRef][PubMed]
    [Google Scholar]
  19. Mitchell R. E., Coddington J. M.. ( 1991;). Biosynthetic pathway to rhizobitoxine in Pseudomonas adropogonis. . Phytochemistry 30:, 1809–1814. [CrossRef]
    [Google Scholar]
  20. Pfaffl M. W., Horgan G. W., Dempfle L.. ( 2002;). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. . Nucleic Acids Res 30:, e36. [CrossRef][PubMed]
    [Google Scholar]
  21. Rigali S., Derouaux A., Giannotta F., Dusart J.. ( 2002;). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. . J Biol Chem 277:, 12507–12515. [CrossRef][PubMed]
    [Google Scholar]
  22. Rosenthal G. A.. ( 1997;). l-Canaline: a potent antimetabolite and anti-cancer agent from leguminous plants. . Life Sci 60:, 1635–1641. [CrossRef][PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H.. ( 2003;). Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. . J Med Microbiol 52:, 403–408. [CrossRef][PubMed]
    [Google Scholar]
  25. Sung M. H., Tanizawa K., Tanaka H., Kuramitsu S., Kagamiyama H., Hirotsu K., Okamoto A., Higuchi T., Soda K.. ( 1991;). Thermostable aspartate aminotransferase from a thermophilic Bacillus species. Gene cloning, sequence determination, and preliminary X-ray characterization. . J Biol Chem 266:, 2567–2572.[PubMed]
    [Google Scholar]
  26. Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J. A. M.. ( 2007;). Primer3Plus, an enhanced web interface to Primer3. . Nucleic Acids Res 35: (Web Server issue), W71–W74. [CrossRef][PubMed]
    [Google Scholar]
  27. Van Rij E. T.. ( 2006;). Environmental and molecular regulation of phenazine-1-carboxamide biosynthesis in Pseudomonas chlororaphis strain PCL1391. PhD thesis, Leiden University.
    [Google Scholar]
  28. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.. ( 2002;). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. . Genome Biol 3:, research0034–research0034.11. [CrossRef][PubMed]
    [Google Scholar]
  29. Yasuta T., Okazaki S., Mitsui H., Yuhashi K., Ezura H., Minamisawa K.. ( 2001;). DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. . Appl Environ Microbiol 67:, 4999–5009. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062166-0
Loading
/content/journal/micro/10.1099/mic.0.062166-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error