1887

Abstract

, an intracellular parasite of protozoa, possesses a distinct dimorphic life cycle that alternates between the vegetative replicative form and the resilient but highly infectious cyst form. Previously, temporally expressed heterodimeric integration host factor (IHF) was shown to be required for differentiation into the cyst form. However, the precise regulatory mechanisms controlling the expression of IHF have not been identified. Microplate kinetic assays with GFP reporter promoter fusion constructs in wild-type, Δ, Δ and Δ mutant strain backgrounds were employed to assess differences in expression levels of , , and . Loss of IHF, RsmY and RsmZ expression in various mutant strain backgrounds was confirmed by quantitative PCR. Here we report that the stationary phase sigma factor RpoS is a positive regulator of IHF, whereas IHF appears to act as a positive autoregulator assisting RpoS. Bioinformatic analyses identified a set of IHF binding sites upstream of one RpoS binding site in the promoter region for both and . Recombinant IHF protein bound and promoter regions , confirming the functionality of these IHF binding sites that may assist in the bending of the promoter DNA to facilitate transcription activation of and by RpoS. Interestingly, the consensus binding site for IHF is very similar to that of the two-component response regulator LetA. LetA negatively regulates transcription of and , implying titrational regulatory control by LetA and IHF. Along with LetA, IHF was found to positively regulate expression of the non-coding regulatory RNAs RsmY and RsmZ responsible for the de-repression of CsrA-repressed transcripts associated with cyst formation, and coordinated post-exponential virulent phenotypes. Taken together, these observations indicate that IHF may have more of an integral role in the global regulatory system governing the transition from replicative to cyst forms than previously thought.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062117-0
2013-03-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/475.html?itemId=/content/journal/micro/10.1099/mic.0.062117-0&mimeType=html&fmt=ahah

References

  1. Arvizu-Gómez J. L., Hernandez-Morales A., Pastor-Palacios G., Brieba L. G., Alvarez-Morales A..( 2011;). Integration host factor (IHF) binds to the promoter region of the phtD operon involved in phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121. BMC Microbiol11:90 [CrossRef][PubMed]
    [Google Scholar]
  2. Aviv M., Giladi H., Schreiber G., Oppenheim A. B., Glaser G..( 1994;). Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol14:1021–1031 [CrossRef][PubMed]
    [Google Scholar]
  3. Bachman M. A., Swanson M. S..( 2001;). RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol40:1201–1214 [CrossRef][PubMed]
    [Google Scholar]
  4. Bachman M. A., Swanson M. S..( 2004;). Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun72:2468–2476 [CrossRef][PubMed]
    [Google Scholar]
  5. Balandina A., Claret L., Hengge-Aronis R., Rouvière-Yaniv J..( 2001;). The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol39:1069–1079 [CrossRef][PubMed]
    [Google Scholar]
  6. Berger K. H., Isberg R. R..( 1993;). Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol7:7–19 [CrossRef][PubMed]
    [Google Scholar]
  7. Brüggemann H., Hagman A., Jules M., Sismeiro O., Dillies M. A., Gouyette C., Kunst F., Steinert M., Heuner K..& other authors ( 2006;). Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol8:1228–1240 [CrossRef][PubMed]
    [Google Scholar]
  8. Byrne B., Swanson M. S..( 1998;). Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun66:3029–3034[PubMed]
    [Google Scholar]
  9. Calb R., Davidovitch A., Koby S., Giladi H., Goldenberg D., Margalit H., Holtel A., Timmis K., Sanchez-Romero J. M..& other authors ( 1996;). Structure and function of the Pseudomonas putida integration host factor. J Bacteriol178:6319–6326[PubMed]
    [Google Scholar]
  10. Cocotl-Yañez M., Sampieri A., Moreno S., Núñez C., Castañeda M., Segura D., Espín G..( 2011;). Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology157:1685–1693 [CrossRef][PubMed]
    [Google Scholar]
  11. Colland F., Fujita N., Kotlarz D., Bown J. A., Meares C. F., Ishihama A., Kolb A..( 1999;). Positioning of σS, the stationary phase σ factor, in Escherichia coli RNA polymerase–promoter open complexes. EMBO J18:4049–4059 [CrossRef][PubMed]
    [Google Scholar]
  12. Dalebroux Z. D., Edwards R. L., Swanson M. S..( 2009;). SpoT governs Legionella pneumophila differentiation in host macrophages. Mol Microbiol71:640–658 [CrossRef][PubMed]
    [Google Scholar]
  13. Dalebroux Z. D., Yagi B. F., Sahr T., Buchrieser C., Swanson M. S..( 2010a;). Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol76:200–219 [CrossRef][PubMed]
    [Google Scholar]
  14. Dalebroux Z. D., Svensson S. L., Gaynor E. C., Swanson M. S..( 2010b;). ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev74:171–199 [CrossRef][PubMed]
    [Google Scholar]
  15. Delic-Attree I., Toussaint B., Froger A., Willison J. C., Vignais P. M..( 1996;). Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology142:2785–2793 [CrossRef][PubMed]
    [Google Scholar]
  16. Dorman C. J., McKenna S., Beloin C..( 2001;). Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int J Med Microbiol291:89–96 [CrossRef][PubMed]
    [Google Scholar]
  17. Edwards R. L., Dalebroux Z. D., Swanson M. S..( 2009;). Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence. Mol Microbiol71:1190–1204 [CrossRef][PubMed]
    [Google Scholar]
  18. Edwards R. L., Jules M., Sahr T., Buchrieser C., Swanson M. S..( 2010;). The Legionella pneumophila LetA/LetS two-component system exhibits rheostat-like behavior. Infect Immun78:2571–2583 [CrossRef][PubMed]
    [Google Scholar]
  19. Faucher S. P., Shuman H. A..( 2011;). Small regulatory RNA and Legionella pneumophila. Front Microbiol2:98[PubMed]
    [Google Scholar]
  20. Faulkner G., Garduño R. A..( 2002;). Ultrastructural analysis of differentiation in Legionella pneumophila. J Bacteriol184:7025–7041 [CrossRef][PubMed]
    [Google Scholar]
  21. Feeley J. C., Gibson R. J., Gorman G. W., Langford N. C., Rasheed J. K., Mackel D. C., Baine W. B..( 1979;). Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol10:437–441[PubMed]
    [Google Scholar]
  22. Fields B. S., Benson R. F., Besser R. E..( 2002;). Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev15:506–526 [CrossRef][PubMed]
    [Google Scholar]
  23. Fyfe J. A. M., Davies J. K..( 1998;). An AT-rich tract containing an integration host factor-binding domain and two UP-like elements enhances transcription from the pilEp1 promoter of Neisseria gonorrhoeae. J Bacteriol180:2152–2159[PubMed]
    [Google Scholar]
  24. Gal-Mor O., Segal G..( 2003;). The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog34:187–194 [CrossRef][PubMed]
    [Google Scholar]
  25. Garduño R. A., Garduño E., Hiltz M., Hoffman P. S..( 2002;). Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun70:6273–6283 [CrossRef][PubMed]
    [Google Scholar]
  26. Gober J. W., Shapiro L..( 1990;). Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev4:1494–1504 [CrossRef][PubMed]
    [Google Scholar]
  27. Goosen N., van de Putte P..( 1995;). The regulation of transcription initiation by integration host factor. Mol Microbiol16:1–7 [CrossRef][PubMed]
    [Google Scholar]
  28. Greub G., Raoult D..( 2003;). Morphology of Legionella pneumophila according to their location within Hartmanella vermiformis. Res Microbiol154:619–621 [CrossRef][PubMed]
    [Google Scholar]
  29. Guyard C., Low D. E..( 2011;). Legionella infections and travel associated legionellosis. Travel Med Infect Dis9:176–186 [CrossRef][PubMed]
    [Google Scholar]
  30. Hales L. M., Shuman H. A..( 1999;). The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol181:4879–4889[PubMed]
    [Google Scholar]
  31. Hammer B. K., Swanson M. S..( 1999;). Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol33:721–731 [CrossRef][PubMed]
    [Google Scholar]
  32. Hammer B. K., Tateda E. S., Swanson M. S..( 2002;). A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol44:107–118 [CrossRef][PubMed]
    [Google Scholar]
  33. Heeb S., Valverde C., Gigot-Bonnefoy C., Haas D..( 2005;). Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett243:251–258 [CrossRef][PubMed]
    [Google Scholar]
  34. Humair B., Wackwitz B., Haas D..( 2010;). GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl Environ Microbiol76:1497–1506 [CrossRef][PubMed]
    [Google Scholar]
  35. Kang Y., Lunin V. V., Skarina T., Savchenko A., Schurr M. J., Hoang T. T..( 2009;). The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol73:120–136 [CrossRef][PubMed]
    [Google Scholar]
  36. LeBlanc J. J., Davidson R. J., Hoffman P. S..( 2006;). Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol188:6235–6244 [CrossRef][PubMed]
    [Google Scholar]
  37. LeBlanc J. J., Brassinga A. K. C., Ewann F., Davidson R. J., Hoffman P. S..( 2008;). An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol190:3444–3455 [CrossRef][PubMed]
    [Google Scholar]
  38. Lee S. J., Gralla J. D..( 2001;). Sigma38 (rpoS) RNA polymerase promoter engagement via −10 region nucleotides. J Biol Chem276:30064–30071 [CrossRef][PubMed]
    [Google Scholar]
  39. Lynch D., Fieser N., Glöggler K., Forsbach-Birk V., Marre R..( 2003;). The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett219:241–248 [CrossRef][PubMed]
    [Google Scholar]
  40. Mangan M. W., Lucchini S., Danino V., Cróinín T. O., Hinton J. C. D., Dorman C. J..( 2006;). The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol59:1831–1847 [CrossRef][PubMed]
    [Google Scholar]
  41. Molofsky A. B., Swanson M. S..( 2003;). Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol50:445–461 [CrossRef][PubMed]
    [Google Scholar]
  42. Molofsky A. B., Swanson M. S..( 2004;). Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol53:29–40 [CrossRef][PubMed]
    [Google Scholar]
  43. Morash M. G., Brassinga A. K. C., Warthan M., Gourabathini P., Garduño R. A., Goodman S. D., Hoffman P. S..( 2009;). Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila. Appl Environ Microbiol75:1826–1837 [CrossRef][PubMed]
    [Google Scholar]
  44. Newton H. J., Ang D. K. Y., van Driel I. R., Hartland E. L..( 2010;). Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev23:274–298 [CrossRef][PubMed]
    [Google Scholar]
  45. Pérez-Rueda E., Janga S. C., Martínez-Antonio A..( 2009;). Scaling relationship in the gene content of transcriptional machinery in bacteria. Mol Biosyst5:1494–1501 [CrossRef][PubMed]
    [Google Scholar]
  46. Rice P. A., Yang S., Mizuuchi K., Nash H. A..( 1996;). Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell87:1295–1306 [CrossRef][PubMed]
    [Google Scholar]
  47. Sahr T., Brüggemann H., Jules M., Lomma M., Albert-Weissenberger C., Cazalet C., Buchrieser C..( 2009;). Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol72:741–762 [CrossRef][PubMed]
    [Google Scholar]
  48. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring harbor Laboratory;
    [Google Scholar]
  49. Sieira R., Comerci D. J., Pietrasanta L. I., Ugalde R. A..( 2004;). Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol Microbiol54:808–822 [CrossRef][PubMed]
    [Google Scholar]
  50. Stonehouse E., Kovacikova G., Taylor R. K., Skorupski K..( 2008;). Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol190:4736–4748 [CrossRef][PubMed]
    [Google Scholar]
  51. Tanaka K., Kusano S., Fujita N., Ishihama A., Takahashi H..( 1995;). Promoter determinants for Escherichia coli RNA polymerase holoenzyme containing σ38 (the rpoS gene product). Nucleic Acids Res23:827–834 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhong J., Douglas A. L., Hatch T. P..( 2001;). Characterization of integration host factor (IHF) binding upstream of the cysteine-rich protein operon (omcAB) promoter of Chlamydia trachomatis LGV serovar L2. Mol Microbiol41:451–462 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062117-0
Loading
/content/journal/micro/10.1099/mic.0.062117-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error