1887

Abstract

The bacterium () and the opportunistic fungus are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of to hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on hyphae recognized by . Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a mutant strain lacking . Confocal microscopy further confirmed these observations, as overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for . Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind . To elucidate the implications of these findings in a clinically relevant setting, an murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of mucosal infection. Interestingly, bacterial cells were only seen within the epithelial tissue when associated with the invasive hyphae. This differed from tongues infected with alone or in conjunction with the mutant strain of , where bacterial presence was limited to the outer layers of the oral tissue. Collectively, the findings generated from this study identified a key role for Als3p in mediating this clinically relevant fungal–bacterial interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062109-0
2012-12-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2975.html?itemId=/content/journal/micro/10.1099/mic.0.062109-0&mimeType=html&fmt=ahah

References

  1. Archer N. K., Mazaitis M. J., Costerton J. W., Leid J. G., Powers M. E., Shirtliff M. E.. ( 2011;). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. . Virulence 2:, 445–459. [CrossRef][PubMed]
    [Google Scholar]
  2. Baena-Monroy T., Moreno-Maldonado V., Franco-Martínez F., Aldape-Barrios B., Quindós G., Sánchez-Vargas L. O.. ( 2005;). Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. . Med Oral Patol Oral Cir Bucal 10: (Suppl. 1), E27–E39.[PubMed]
    [Google Scholar]
  3. Brady R. A., Leid J. G., Camper A. K., Costerton J. W., Shirtliff M. E.. ( 2006;). Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. . Infect Immun 74:, 3415–3426. [CrossRef][PubMed]
    [Google Scholar]
  4. Brand A., Barnes J. D., Mackenzie K. S., Odds F. C., Gow N. A.. ( 2008;). Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. . FEMS Microbiol Lett 287:, 48–55. [CrossRef][PubMed]
    [Google Scholar]
  5. Calderone R. A., Clancy C. J.. ( 2012;). Candida and Candidiasis, , 2nd edn.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Coleman D. A., Oh S. H., Zhao X., Zhao H., Hutchins J. T., Vernachio J. H., Patti J. M., Hoyer L. L.. ( 2009;). Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. . J Microbiol Methods 78:, 71–78. [CrossRef][PubMed]
    [Google Scholar]
  7. Combes A., Figliolini C., Trouillet J. L., Kassis N., Wolff M., Gibert C., Chastre J.. ( 2002;). Incidence and outcome of polymicrobial ventilator-associated pneumonia. . Chest 121:, 1618–1623. [CrossRef][PubMed]
    [Google Scholar]
  8. Cuesta A. I., Jewtuchowicz V., Brusca M. I., Nastri M. L., Rosa A. C.. ( 2010;). Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. . Acta Odontol Latinoam 23:, 20–26.[PubMed]
    [Google Scholar]
  9. Cugini C., Calfee M. W., Farrow J. M. III, Morales D. K., Pesci E. C., Hogan D. A.. ( 2007;). Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. . Mol Microbiol 65:, 896–906. [CrossRef][PubMed]
    [Google Scholar]
  10. Davis D., Edwards J. E. Jr, Mitchell A. P., Ibrahim A. S.. ( 2000;). Candida albicans RIM101 pH response pathway is required for host–pathogen interactions. . Infect Immun 68:, 5953–5959. [CrossRef][PubMed]
    [Google Scholar]
  11. de Repentigny L., Lewandowski D., Jolicoeur P.. ( 2004;). Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. . Clin Microbiol Rev 17:, 729–759. [CrossRef][PubMed]
    [Google Scholar]
  12. Dufrêne Y. F.. ( 2002;). Atomic force microscopy, a powerful tool in microbiology. . J Bacteriol 184:, 5205–5213. [CrossRef][PubMed]
    [Google Scholar]
  13. Fonzi W. A., Irwin M. Y.. ( 1993;). Isogenic strain construction and gene mapping in Candida albicans. . Genetics 134:, 717–728.[PubMed]
    [Google Scholar]
  14. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef][PubMed]
    [Google Scholar]
  15. Goetz A., Posey K., Fleming J., Jacobs S., Boody L., Wagener M. M., Muder R. R.. ( 1999;). Methicillin-resistant Staphylococcus aureus in the community: a hospital-based study. . Infect Control Hosp Epidemiol 20:, 689–691. [CrossRef][PubMed]
    [Google Scholar]
  16. Harriott M. M., Noverr M. C.. ( 2009;). Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. . Antimicrob Agents Chemother 53:, 3914–3922. [CrossRef][PubMed]
    [Google Scholar]
  17. Harriott M. M., Noverr M. C.. ( 2010;). Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. . Antimicrob Agents Chemother 54:, 3746–3755. [CrossRef][PubMed]
    [Google Scholar]
  18. Hogan D. A., Kolter R.. ( 2002;). Pseudomonas–Candida interactions: an ecological role for virulence factors. . Science 296:, 2229–2232. [CrossRef][PubMed]
    [Google Scholar]
  19. Hogan D. A., Vik A., Kolter R.. ( 2004;). A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. . Mol Microbiol 54:, 1212–1223. [CrossRef][PubMed]
    [Google Scholar]
  20. Holmes A. R., McNab R., Jenkinson H. F.. ( 1996;). Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin–receptor interactions. . Infect Immun 64:, 4680–4685.[PubMed]
    [Google Scholar]
  21. Hoyer L. L., Green C. B., Oh S. H., Zhao X.. ( 2008;). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. . Med Mycol 46:, 1–15. [CrossRef][PubMed]
    [Google Scholar]
  22. Jenkinson H. F., Lala H. C., Shepherd M. G.. ( 1990;). Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. . Infect Immun 58:, 1429–1436.[PubMed]
    [Google Scholar]
  23. Klotz S. A., Chasin B. S., Powell B., Gaur N. K., Lipke P. N.. ( 2007a;). Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. . Diagn Microbiol Infect Dis 59:, 401–406. [CrossRef][PubMed]
    [Google Scholar]
  24. Klotz S. A., Gaur N. K., De Armond R., Sheppard D., Khardori N., Edwards J. E. Jr, Lipke P. N., El-Azizi M.. ( 2007b;). Candida albicans Als proteins mediate aggregation with bacteria and yeasts. . Med Mycol 45:, 363–370. [CrossRef][PubMed]
    [Google Scholar]
  25. Moreillon P., Entenza J. M., Francioli P., McDevitt D., Foster T. J., François P., Vaudaux P.. ( 1995;). Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. . Infect Immun 63:, 4738–4743.[PubMed]
    [Google Scholar]
  26. Mousa H. A.. ( 1997;). Aerobic, anaerobic and fungal burn wound infections. . J Hosp Infect 37:, 317–323. [CrossRef][PubMed]
    [Google Scholar]
  27. Nobbs A. H., Vickerman M. M., Jenkinson H. F.. ( 2010;). Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. . Eukaryot Cell 9:, 1622–1634. [CrossRef][PubMed]
    [Google Scholar]
  28. O’Sullivan J. M., Jenkinson H. F., Cannon R. D.. ( 2000;). Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. . Microbiology 146:, 41–48.[PubMed]
    [Google Scholar]
  29. Ovchinnikova E. S., Krom B. P., van der Mei H. C., Busscher H. J.. ( 2012;). Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. . Soft Matter 8:, 6454–6461. [CrossRef]
    [Google Scholar]
  30. Penn C., Klotz S. A.. ( 1994;). Binding of plasma fibronectin to Candida albicans occurs through the cell binding domain. . Microb Pathog 17:, 387–393. [CrossRef][PubMed]
    [Google Scholar]
  31. Peters B. M., Jabra-Rizk M. A., Scheper M. A., Leid J. G., Costerton J. W., Shirtliff M. E.. ( 2010;). Microbial interactions and differential protein expression in Staphylococcus aureusCandida albicans dual-species biofilms. . FEMS Immunol Med Microbiol 59:, 493–503.[PubMed]
    [Google Scholar]
  32. Peters B. M., Jabra-Rizk M. A., O’May G. A., Costerton J. W., Shirtliff M. E.. ( 2012;). Polymicrobial interactions: impact on pathogenesis and human disease. . Clin Microbiol Rev 25:, 193–213. [CrossRef][PubMed]
    [Google Scholar]
  33. Postollec F., Norde W., de Vries J., Busscher H. J., van der Mei H. C.. ( 2006;). Interactive forces between co-aggregating and non-co-aggregating oral bacterial pairs. . J Dent Res 85:, 231–234. [CrossRef][PubMed]
    [Google Scholar]
  34. Scanvic A., Denic L., Gaillon S., Giry P., Andremont A., Lucet J. C.. ( 2001;). Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. . Clin Infect Dis 32:, 1393–1398. [CrossRef][PubMed]
    [Google Scholar]
  35. Shirtliff M. E., Peters B. M., Jabra-Rizk M. A.. ( 2009;). Cross-kingdom interactions: Candida albicans and bacteria. . FEMS Microbiol Lett 299:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  36. Silverman R. J., Nobbs A. H., Vickerman M. M., Barbour M. E., Jenkinson H. F.. ( 2010;). Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. . Infect Immun 78:, 4644–4652. [CrossRef][PubMed]
    [Google Scholar]
  37. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P.. ( 1999;). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. . Science 283:, 1535–1538. [CrossRef][PubMed]
    [Google Scholar]
  38. Sudbery P., Gow N., Berman J.. ( 2004;). The distinct morphogenic states of Candida albicans. . Trends Microbiol 12:, 317–324. [CrossRef][PubMed]
    [Google Scholar]
  39. Tang Y. W., Stratton C. W.. ( 2010;). Staphylococcus aureus: an old pathogen with new weapons. . Clin Lab Med 30:, 179–208. [CrossRef][PubMed]
    [Google Scholar]
  40. Troillet N., Carmeli Y., Samore M. H., Dakos J., Eichelberger K., DeGirolami P. C., Karchmer A. W.. ( 1998;). Carriage of methicillin-resistant Staphylococcus aureus at hospital admission. . Infect Control Hosp Epidemiol 19:, 181–185. [CrossRef][PubMed]
    [Google Scholar]
  41. Valenza G., Tappe D., Turnwald D., Frosch M., König C., Hebestreit H., Abele-Horn M.. ( 2008;). Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. . J Cyst Fibros 7:, 123–127. [CrossRef][PubMed]
    [Google Scholar]
  42. Waar K., van der Mei H. C., Harmsen H. J., de Vries J., Atema-Smit J., Degener J. E., Busscher H. J.. ( 2005;). Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance. . Microbiology 151:, 2459–2464. [CrossRef][PubMed]
    [Google Scholar]
  43. Wisplinghoff H., Bischoff T., Tallent S. M., Seifert H., Wenzel R. P., Edmond M. B.. ( 2004;). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. . Clin Infect Dis 39:, 309–317. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhao X., Oh S. H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J., Hoyer L. L.. ( 2004;). ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. . Microbiology 150:, 2415–2428. [CrossRef][PubMed]
    [Google Scholar]
  45. Zhao X., Oh S. H., Yeater K. M., Hoyer L. L.. ( 2005;). Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. . Microbiology 151:, 1619–1630. [CrossRef][PubMed]
    [Google Scholar]
  46. Zhao X., Oh S. H., Hoyer L. L.. ( 2007a;). Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. . Med Mycol 45:, 429–434. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhao X., Oh S. H., Hoyer L. L.. ( 2007b;). Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. . Microbiology 153:, 2342–2350. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062109-0
Loading
/content/journal/micro/10.1099/mic.0.062109-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error