1887

Abstract

possesses a complex cell wall that is unique and essential for interaction of the pathogen with its human host. Emerging evidence suggests that the biosynthesis of complex cell-wall lipids is mediated by serine/threonine protein kinases (STPKs). Herein, we show, using radiolabelling, MS and immunostaining analyses, that targeted deletion of one of the STPKs, attenuates the production of phthiocerol dimycocerosates (PDIMs), a major virulence lipid. Comparative protein expression analysis revealed that proteins in the PDIM biosynthetic pathway are differentially expressed in a deleted strain. Furthermore, we analysed the composition of the major lipoglycans, lipoarabinomannan (LAM) and lipomannan (LM), and found a twofold higher LAM/LM ratio in the mutant strain. Thus, we provide experimental evidence that PknH contributes to the production and synthesis of cell-wall components.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062067-0
2013-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/726.html?itemId=/content/journal/micro/10.1099/mic.0.062067-0&mimeType=html&fmt=ahah

References

  1. Alibaud L. , Rombouts Y. , Trivelli X. , Burguière A. , Cirillo S. L. G. , Cirillo J. D. , Dubremetz J.-F. , Guérardel Y. , Lutfalla G. , Kremer L. . ( 2011; ). A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. . Mol Microbiol 80:, 919–934. [CrossRef] [PubMed]
    [Google Scholar]
  2. Astarie-Dequeker C. , Le Guyader L. , Malaga W. , Seaphanh F.-K. , Chalut C. , Lopez A. , Guilhot C. . ( 2009; ). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. . PLoS Pathog 5:, e1000289. [CrossRef] [PubMed]
    [Google Scholar]
  3. Av-Gay Y. , Everett M. . ( 2000; ). The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. . Trends Microbiol 8:, 238–244. [CrossRef] [PubMed]
    [Google Scholar]
  4. Azad A. K. , Sirakova T. D. , Rogers L. M. , Kolattukudy P. E. . ( 1996; ). Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. . Proc Natl Acad Sci U S A 93:, 4787–4792. [CrossRef] [PubMed]
    [Google Scholar]
  5. Azad A. K. , Sirakova T. D. , Fernandes N. D. , Kolattukudy P. E. . ( 1997; ). Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. . J Biol Chem 272:, 16741–16745. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bach H. , Mazor Y. , Shaky S. , Shoham-Lev A. , Berdichevsky Y. , Gutnick D. L. , Benhar I. . ( 2001; ). Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. . J Mol Biol 312:, 79–93. [CrossRef] [PubMed]
    [Google Scholar]
  7. Besra G. S. . ( 1998; ). Preparation of cell-wall fractions from mycobacteria. . In Mycobacteria Protocols, Methods in Molecular Biology, pp. 91–108. Edited by Parish T. , Stoker N. G. . . Totowa, NJ, USA:: Humana Press Inc;. [CrossRef]
    [Google Scholar]
  8. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  9. Camacho L. R. , Ensergueix D. , Perez E. , Gicquel B. , Guilhot C. . ( 1999; ). Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. . Mol Microbiol 34:, 257–267. [CrossRef] [PubMed]
    [Google Scholar]
  10. Camacho L. R. , Constant P. , Raynaud C. , Laneelle M. A. , Triccas J. A. , Gicquel B. , Daffe M. , Guilhot C. . ( 2001; ). Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. . J Biol Chem 276:, 19845–19854. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chao J. , Wong D. , Zheng X. , Poirier V. , Bach H. , Hmama Z. , Av-Gay Y. . ( 2010a; ). Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. . Biochim Biophys Acta 1804:, 620–627. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chao J. D. , Papavinasasundaram K. G. , Zheng X. , Chávez-Steenbock A. , Wang X. , Lee G. Q. , Av-Gay Y. . ( 2010b; ). Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. . J Biol Chem 285:, 29239–29246. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cole S. T. , Brosch R. , Parkhill J. , Garnier T. , Churcher C. , Harris D. , Gordon S. V. , Eiglmeier K. , Gas S. . & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef] [PubMed]
    [Google Scholar]
  14. Constant P. , Perez E. , Malaga W. , Lanéelle M.-A. , Saurel O. , Daffé M. , Guilhot C. . ( 2002; ). Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. . J Biol Chem 277:, 38148–38158. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cox J. S. , Chen B. , McNeil M. , Jacobs W. R. Jr . ( 1999; ). Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. . Nature 402:, 79–83.[PubMed] [CrossRef]
    [Google Scholar]
  16. Daffé M. , Laneelle M. A. . ( 1988; ). Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. . J Gen Microbiol 134:, 2049–2055.[PubMed]
    [Google Scholar]
  17. Dao D. N. , Sweeney K. , Hsu T. , Gurcha S. S. , Nascimento I. P. , Roshevsky D. , Besra G. S. , Chan J. , Porcelli S. A. , Jacobs W. R. . ( 2008; ). Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. . PLoS Pathog 4:, e1000081. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dobson G. , Minnikin D. E. , Minnikin S. E. , Parlett M. , Goodfellow M. , Ridell M. , Magnusson M. . ( 1985; ). Systematics analysis of complex mycobacterial lipids. . In Chemical Methods in Bacterial systematics, pp. 237–265. Edited by Goodfellow M. , Minnikin D. E. . London:: Academic Press;.
    [Google Scholar]
  19. Domenech P. , Reed M. B. . ( 2009; ). Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. . Microbiology 155:, 3532–3543. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gupta M. , Sajid A. , Arora G. , Tandon V. , Singh Y. . ( 2009; ). Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. . J Biol Chem 284:, 34723–34734. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ioerger T. R. , Feng Y. , Ganesula K. , Chen X. , Dobos K. M. , Fortune S. , Jacobs W. R. Jr , Mizrahi V. , Parish T. . & other authors ( 2010; ). Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. . J Bacteriol 192:, 3645–3653. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jain M. , Cox J. S. . ( 2005; ). Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. . PLoS Pathog 1:, e2. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jain M. , Petzold C. J. , Schelle M. W. , Leavell M. D. , Mougous J. D. , Bertozzi C. R. , Leary J. A. , Cox J. S. . ( 2007; ). Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. . Proc Natl Acad Sci U S A 104:, 5133–5138. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kirksey M. A. , Tischler A. D. , Siméone R. , Hisert K. B. , Uplekar S. , Guilhot C. , McKinney J. D. . ( 2011; ). Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity. . Infect Immun 79:, 2829–2838. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kremer L. , Besra G. S. . ( 2005; ). A waxy tale by Mycobacterium tuberculosis . . In Tuberculosis and the tubercle bacillus, pp. 287–305. Edited by Cole S. T. , Davies Eisenach K. , McMurray D. N. , Jacobs Jr W. R. . Washington:: American Society for Microbiology;.
    [Google Scholar]
  26. Kremer L. , Dover L. G. , Carrère S. , Nampoothiri K. M. , Lesjean S. , Brown A. K. , Brennan P. J. , Minnikin D. E. , Locht C. , Besra G. S. . ( 2002; ). Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. . Biochem J 364:, 423–430. [CrossRef] [PubMed]
    [Google Scholar]
  27. Minnikin D. E. . ( 1982; ). Lipids: complex lipids their chemistry, biosynthesis and roles. . In The Biology of Mycobacteria, pp. 95–184. Edited by Ratledge C. , Stanford J. . . London, UK:: Academic Press Ltd;.
    [Google Scholar]
  28. Minnikin D. E. , Kremer L. , Dover L. G. , Besra G. S. . ( 2002; ). The methyl-branched fortifications of Mycobacterium tuberculosis. . Chem Biol 9:, 545–553. [CrossRef] [PubMed]
    [Google Scholar]
  29. Molle V. , Kremer L. , Girard-Blanc C. , Besra G. S. , Cozzone A. J. , Prost J.-F. . ( 2003; ). An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. . Biochemistry 42:, 15300–15309. [CrossRef] [PubMed]
    [Google Scholar]
  30. Molle V. , Brown A. K. , Besra G. S. , Cozzone A. J. , Kremer L. . ( 2006; ). The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. . J Biol Chem 281:, 30094–30103. [CrossRef] [PubMed]
    [Google Scholar]
  31. Onwueme K. C. , Ferreras J. A. , Buglino J. , Lima C. D. , Quadri L. E. N. . ( 2004; ). Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. . Proc Natl Acad Sci U S A 101:, 4608–4613. [CrossRef] [PubMed]
    [Google Scholar]
  32. Onwueme K. C. , Vos C. J. , Zurita J. , Ferreras J. A. , Quadri L. E. N. . ( 2005; ). The dimycocerosate ester polyketide virulence factors of mycobacteria. . Prog Lipid Res 44:, 259–302. [CrossRef] [PubMed]
    [Google Scholar]
  33. Papavinasasundaram K. G. , Chan B. , Chung J.-H. , Colston M. J. , Davis E. O. , Av-Gay Y. . ( 2005; ). Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. . J Bacteriol 187:, 5751–5760. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pérez J. , Garcia R. , Bach H. , de Waard J. H. , Jacobs W. R. Jr , Av-Gay Y. , Bubis J. , Takiff H. E. . ( 2006; ). Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. . Biochem Biophys Res Commun 348:, 6–12. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rao A. , Ranganathan A. . ( 2004; ). Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. . Mol Genet Genomics 272:, 571–579. [CrossRef] [PubMed]
    [Google Scholar]
  36. Reed M. B. , Domenech P. , Manca C. , Su H. , Barczak A. K. , Kreiswirth B. N. , Kaplan G. , Barry C. E. III . ( 2004; ). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. . Nature 431:, 84–87. [CrossRef] [PubMed]
    [Google Scholar]
  37. Rousseau C. , Winter N. , Pivert E. , Bordat Y. , Neyrolles O. , Avé P. , Huerre M. , Gicquel B. , Jackson M. . ( 2004; ). Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. . Cell Microbiol 6:, 277–287. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sartain M. J. , Dick D. L. , Rithner C. D. , Crick D. C. , Belisle J. T. . ( 2011; ). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. . J Lipid Res 52:, 861–872. [CrossRef] [PubMed]
    [Google Scholar]
  39. Schaeffer M. L. , Agnihotri G. , Volker C. , Kallender H. , Brennan P. J. , Lonsdale J. T. . ( 2001; ). Purification and biochemical characterization of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthases KasA and KasB. . J Biol Chem 276:, 47029–47037. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sendide K. , Deghmane A.-E. , Reyrat J.-M. , Talal A. , Hmama Z. . ( 2004; ). Mycobacterium bovis BCG urease attenuates major histocompatibility complex class II trafficking to the macrophage cell surface. . Infect Immun 72:, 4200–4209. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sharma K. , Gupta M. , Pathak M. , Gupta N. , Koul A. , Sarangi S. , Baweja R. , Singh Y. . ( 2006; ). Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. . J Bacteriol 188:, 2936–2944. [CrossRef] [PubMed]
    [Google Scholar]
  42. Torrelles J. B. , Schlesinger L. S. . ( 2010; ). Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. . Tuberculosis (Edinb) 90:, 84–93. [CrossRef] [PubMed]
    [Google Scholar]
  43. Trivedi O. A. , Arora P. , Sridharan V. , Tickoo R. , Mohanty D. , Gokhale R. S. . ( 2004; ). Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. . Nature 428:, 441–445. [CrossRef] [PubMed]
    [Google Scholar]
  44. Trivedi O. A. , Arora P. , Vats A. , Ansari M. Z. , Tickoo R. , Sridharan V. , Mohanty D. , Gokhale R. S. . ( 2005; ). Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. . Mol Cell 17:, 631–643. [CrossRef] [PubMed]
    [Google Scholar]
  45. Veyron-Churlet R. , Molle V. , Taylor R. C. , Brown A. K. , Besra G. S. , Zanella-Cléon I. , Fütterer K. , Kremer L. . ( 2009; ). The Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. . J Biol Chem 284:, 6414–6424. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yu J. , Tran V. , Li M. , Huang X. , Niu C. , Wang D. , Zhu J. , Wang J. , Gao Q. , Liu J. . ( 2012; ). Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. . Infect Immun 80:, 1381–1389. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zheng X. , Papavinasasundaram K. G. , Av-Gay Y. . ( 2007; ). Novel substrates of Mycobacterium tuberculosis PknH Ser/Thr kinase. . Biochem Biophys Res Commun 355:, 162–168. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062067-0
Loading
/content/journal/micro/10.1099/mic.0.062067-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error