1887

Abstract

The are a large family of Proteobacteria that include many well-known prokaryotic genera, such as , and . The main ideas of synonymous codon usage (CU) evolution and translational selection have been deeply influenced by studies with these bacterial groups. In this work we report the analysis of the CU pattern of completely sequenced bacterial genomes that belong to the . The effect of selection in translation acting at the levels of speed and accuracy, and phylogenetic trends within this group are described. Preferred (optimal) codons were identified. The evolutionary dynamics of these codons were studied and following a Bayesian approach these preferences were traced back to the common ancestor of the family. We found that there is some level of variation in selection among the analysed micro-organisms that is probably associated with lineage-specific trends. The codon bias was largely conserved across the evolutionary time of the family in highly expressed genes and protein conserved regions, suggesting a major role of negative selection. In this sense, the results support the idea that the extant CU bias is finely tuned over the ancestral well-conserved pool of tRNAs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061952-0
2013-03-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/555.html?itemId=/content/journal/micro/10.1099/mic.0.061952-0&mimeType=html&fmt=ahah

References

  1. Akashi H.. ( 1994;). Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics136:927–935[PubMed]
    [Google Scholar]
  2. Botzman M., Margalit H.. ( 2011;). Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol12:R109 [CrossRef][PubMed]
    [Google Scholar]
  3. Charif D., Thioulouse J., Lobry J. R., Perrière G.. ( 2005;). Online synonymous codon usage analyses with the ade4 and seqinR packages. Bioinformatics21:545–547 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen S. L., Lee W., Hottes A. K., Shapiro L., McAdams H. H.. ( 2004;). Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci U S A101:3480–3485 [CrossRef][PubMed]
    [Google Scholar]
  5. Drummond D. A., Wilke C. O.. ( 2008;). Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell134:341–352 [CrossRef][PubMed]
    [Google Scholar]
  6. Edgar R. C.. ( 2004;). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  7. Eyre-Walker A.. ( 1996;). Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy?. Mol Biol Evol13:864–872 [CrossRef][PubMed]
    [Google Scholar]
  8. Grantham R., Gautier C., Gouy M., Mercier R., Pavé A.. ( 1980;). Codon catalog usage and the genome hypothesis. Nucleic Acids Res8:r49–r62 [CrossRef][PubMed]
    [Google Scholar]
  9. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  10. Herbeck J. T., Wall D. P., Wernegreen J. J.. ( 2003;). Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia . Microbiology149:2585–2596 [CrossRef][PubMed]
    [Google Scholar]
  11. Hershberg R., Petrov D. A.. ( 2008;). Selection on codon bias. Annu Rev Genet42:287–299 [CrossRef][PubMed]
    [Google Scholar]
  12. Higgs P. G., Ran W.. ( 2008;). Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol25:2279–2291 [CrossRef][PubMed]
    [Google Scholar]
  13. Ikemura T.. ( 1985;). Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol2:13–34[PubMed]
    [Google Scholar]
  14. Iriarte A., Baraibar J. D., Romero H., Musto H.. ( 2011;). Selected codon usage bias in members of the class Mollicutes. Gene473:110–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F. U., Kerner M. J., Frishman D.. ( 2008;). Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics9:102 [CrossRef][PubMed]
    [Google Scholar]
  16. Kahali B., Basak S., Ghosh T. C.. ( 2008;). Delving deeper into the unexpected correlation between gene expressivity and codon usage bias of Escherichia coli genome. J Biomol Struct Dyn25:655–661 [CrossRef][PubMed]
    [Google Scholar]
  17. Lowe T. M., Eddy S. R.. ( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res25:955–964[PubMed][CrossRef]
    [Google Scholar]
  18. McGaughran A., Holland B. R.. ( 2010;). Testing the effect of metabolic rate on DNA variability at the intra-specific level. PLoS ONE5:e9686 [CrossRef][PubMed]
    [Google Scholar]
  19. Naum M., Brown E. W., Mason-Gamer R. J.. ( 2008;). Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae?. J Mol Evol66:630–642 [CrossRef][PubMed]
    [Google Scholar]
  20. Novembre J. A.. ( 2002;). Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol19:1390–1394 [CrossRef][PubMed]
    [Google Scholar]
  21. Pagel M., Meade A.. ( 2006;). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat167:808–825 [CrossRef][PubMed]
    [Google Scholar]
  22. Pagel M., Meade A., Barker D.. ( 2004;). Bayesian estimation of ancestral character states on phylogenies. Syst Biol53:673–684 [CrossRef][PubMed]
    [Google Scholar]
  23. Paradis E., Claude J., Strimmer K.. ( 2004;). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics20:289–290 [CrossRef][PubMed]
    [Google Scholar]
  24. Paradis S., Boissinot M., Paquette N., Bélanger S. D., Martel E. A., Boudreau D. K., Picard F. J., Ouellette M., Roy P. H., Bergeron M. G.. ( 2005;). Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase β-subunit. Int J Syst Evol Microbiol55:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
  25. Pham H. N., Ohkusu K., Mishima N., Noda M., Monir Shah M., Sun X., Hayashi M., Ezaki T.. ( 2007;). Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Microbiol Infect Dis58:153–161 [CrossRef][PubMed]
    [Google Scholar]
  26. Rambaut A., Drummond A. J.. ( 2007;).http://beast.bio.ed.ac.uk/Tracer
  27. Retchless A. C., Lawrence J. G.. ( 2011;). Quantification of codon selection for comparative bacterial genomics. BMC Genomics12:374 [CrossRef][PubMed]
    [Google Scholar]
  28. Rice P., Longden I., Bleasby A.. ( 2000;). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  29. Rispe C., Delmotte F., van Ham R. C., Moya A.. ( 2004;). Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. Genome Res14:44–53 [CrossRef][PubMed]
    [Google Scholar]
  30. Sharp P. M., Li W. H.. ( 1986;). Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res14:7737–7749 [CrossRef][PubMed]
    [Google Scholar]
  31. Sharp P. M., Li W. H.. ( 1987a;). The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res15:1281–1295 [CrossRef][PubMed]
    [Google Scholar]
  32. Sharp P. M., Li W. H.. ( 1987b;). The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol4:222–230[PubMed]
    [Google Scholar]
  33. Sharp P. M., Bailes E., Grocock R. J., Peden J. F., Sockett R. E.. ( 2005;). Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res33:1141–1153 [CrossRef][PubMed]
    [Google Scholar]
  34. Sharp P. M., Emery L. R., Zeng K.. ( 2010;). Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci365:1203–1212 [CrossRef][PubMed]
    [Google Scholar]
  35. Singer G. A., Hickey D. A.. ( 2000;). Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol Biol Evol17:1581–1588 [CrossRef][PubMed]
    [Google Scholar]
  36. Stoletzki N., Eyre-Walker A.. ( 2007;). Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol24:374–381 [CrossRef][PubMed]
    [Google Scholar]
  37. Sukumaran J., Holder M. T.. ( 2010;). DendroPy: a Python library for phylogenetic computing. Bioinformatics26:1569–1571 [CrossRef][PubMed]
    [Google Scholar]
  38. Supek F., Vlahovicek K.. ( 2004;). INCA: synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics20:2329–2330 [CrossRef][PubMed]
    [Google Scholar]
  39. Supek F., Vlahovicek K.. ( 2005;). Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics6:182 [CrossRef][PubMed]
    [Google Scholar]
  40. Supek F., Skunca N., Repar J., Vlahovicek K., Smuc T.. ( 2010;). Translational selection is ubiquitous in prokaryotes. PLoS Genet6:e1001004 [CrossRef][PubMed]
    [Google Scholar]
  41. Suzuki H., Brown C. J., Forney L. J., Top E. M.. ( 2008;). Comparison of correspondence analysis methods for synonymous codon usage in bacteria. DNA Res15:357–365 [CrossRef][PubMed]
    [Google Scholar]
  42. Talavera G., Castresana J.. ( 2007;). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  43. Thioulouse J., Chessel D., Dole’dec S., Olivier J.-M.. ( 1997;). ADE-4: a multivariate analysis and graphical display software. Stat Comput7:75–83 [CrossRef]
    [Google Scholar]
  44. Toth I. K., Pritchard L., Birch P. R.. ( 2006;). Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol44:305–336 [CrossRef][PubMed]
    [Google Scholar]
  45. Vieira-Silva S., Rocha E. P.. ( 2008;). An assessment of the impacts of molecular oxygen on the evolution of proteomes. Mol Biol Evol25:1931–1942 [CrossRef][PubMed]
    [Google Scholar]
  46. Wang B., Shao Z. Q., Xu Y., Liu J., Liu Y., Hang Y. Y., Chen J. Q.. ( 2011;). Optimal codon identities in bacteria: implications from the conflicting results of two different methods. PLoS ONE6:e22714 [CrossRef][PubMed]
    [Google Scholar]
  47. Wernegreen J. J., Funk D. J.. ( 2004;). Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome. J Mol Evol59:849–858 [CrossRef][PubMed]
    [Google Scholar]
  48. Wertz J. E., Goldstone C., Gordon D. M., Riley M. A.. ( 2003;). A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol16:1236–1248 [CrossRef][PubMed]
    [Google Scholar]
  49. Withers M., Wernisch L., dos Reis M.. ( 2006;). Archaeology and evolution of transfer RNA genes in the Escherichia coli genome. RNA12:933–942 [CrossRef][PubMed]
    [Google Scholar]
  50. Yang Z.. ( 2007;). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol24:1586–1591 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061952-0
Loading
/content/journal/micro/10.1099/mic.0.061952-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error