1887

Abstract

A multisensory, hybrid histidine kinase (HK) and a response regulator (RR), which together may well constitute a two-component regulatory system (TCS), have been located in FP35 by transposon mutagenesis. This TCS is homologous to the GacS/GacA system described for many Gram-negative bacteria. An analysis of crude -acylhomoserine lactone (AHL) extracts from cultures of FP35 and FP35 mutants showed that they produced lower quantities of AHLs than the wild-type strain. In addition, RT-PCR analysis revealed a considerable decrease in the expression of the quorum-sensing (QS) genes and compared with the wild-type strain. This result indicates that the GacS/GacA TCS exerts a positive effect upon the QS HanR/HanI system and suggests its integral involvement in the intercellular communication strategies of this bacterium. We have also demonstrated the influence of GacS and GacA upon exopolysaccharide production and biofilm formation, in which this regulatory machinery appears to play a key role in an overall system that co-ordinates gene expression and behaviour in FP35 in response to environmental conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061721-0
2013-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/462.html?itemId=/content/journal/micro/10.1099/mic.0.061721-0&mimeType=html&fmt=ahah

References

  1. Amjres H., Béjar V., Quesada E., Abrini J., Llamas I.. ( 2011;). Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol61:2600–2605 [CrossRef][PubMed]
    [Google Scholar]
  2. Arco Y., Llamas I., Martínez-Checa F., Argandoña M., Quesada E., del Moral A.. ( 2005;). epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura . Microbiology151:2841–2851 [CrossRef][PubMed]
    [Google Scholar]
  3. Bejerano-Sagie M., Xavier K. B.. ( 2007;). The role of small RNAs in quorum sensing. Curr Opin Microbiol10:189–198 [CrossRef][PubMed]
    [Google Scholar]
  4. Bertani I., Venturi V.. ( 2004;). Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol70:5493–5502 [CrossRef][PubMed]
    [Google Scholar]
  5. Bouchotroch S., Quesada E., del Moral A., Llamas I., Béjar V.. ( 2001;). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol51:1625–1632 [CrossRef][PubMed]
    [Google Scholar]
  6. Branda S. S., Vik S., Friedman L., Kolter R.. ( 2005;). Biofilms: the matrix revisited. Trends Microbiol13:20–26 [CrossRef][PubMed]
    [Google Scholar]
  7. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S.. ( 2009;). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol73:434–445 [CrossRef][PubMed]
    [Google Scholar]
  8. Bullock W. O., Fernández J. M., Short J. M.. ( 1987;). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques5:376–378
    [Google Scholar]
  9. Castañeda M., Guzmán J., Moreno S., Espín G.. ( 2000;). The GacS sensor kinase regulates alginate and poly-β-hydroxybutyrate production in Azotobacter vinelandii . J Bacteriol182:2624–2628 [CrossRef][PubMed]
    [Google Scholar]
  10. Castañeda M., Sánchez J., Moreno S., Núñez C., Espín G.. ( 2001;). The global regulators GacA and σ(S) form part of a cascade that controls alginate production in Azotobacter vinelandii . J Bacteriol183:6787–6793 [CrossRef][PubMed]
    [Google Scholar]
  11. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. ( 1990;). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572[PubMed]
    [Google Scholar]
  12. de Souza J. T., Mazzola M., Raaijmakers J. M.. ( 2003;). Conservation of the response regulator gene gacA in Pseudomonas species. Environ Microbiol5:1328–1340 [CrossRef][PubMed]
    [Google Scholar]
  13. Dieppois G., Ducret V., Caille O., Perron K.. ( 2012;). The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa . PLoS ONE7:e38148 [CrossRef][PubMed]
    [Google Scholar]
  14. Donlan R. M., Costerton J. W.. ( 2002;). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  15. Eberhard A., Longin T., Widrig C. A., Stranick S. J.. ( 1991;). Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch Microbiol155:294–297 [CrossRef]
    [Google Scholar]
  16. Flemming H. C., Neu T. R., Wozniak D. J.. ( 2007;). The EPS matrix: the “house of biofilm cells”. J Bacteriol189:7945–7947 [CrossRef][PubMed]
    [Google Scholar]
  17. Fuqua W. C., Winans S. C., Greenberg E. P.. ( 1994;). Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275[PubMed]
    [Google Scholar]
  18. Galperin M. Y.. ( 2006;). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol188:4169–4182 [CrossRef][PubMed]
    [Google Scholar]
  19. Gao R., Mack T. R., Stock A. M.. ( 2007;). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci32:225–234 [CrossRef][PubMed]
    [Google Scholar]
  20. González J. E., Marketon M. M.. ( 2003;). Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev67:574–592 [CrossRef][PubMed]
    [Google Scholar]
  21. González-Domenech C. M., Béjar V., Martínez-Checa F., Quesada E.. ( 2008a;). Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol58:872–876 [CrossRef][PubMed]
    [Google Scholar]
  22. González-Domenech C. M., Martínez-Checa F., Quesada E., Béjar V.. ( 2008b;). Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol58:803–809 [CrossRef][PubMed]
    [Google Scholar]
  23. Gooderham W. J., Hancock R. E. W.. ( 2009;). Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa . FEMS Microbiol Rev33:279–294 [CrossRef][PubMed]
    [Google Scholar]
  24. Heeb S., Haas D.. ( 2001;). Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact14:1351–1363 [CrossRef][PubMed]
    [Google Scholar]
  25. Hengge-Aronis R.. ( 2002;). Signal transduction and regulatory mechanisms involved in control of the σ(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395 [CrossRef][PubMed]
    [Google Scholar]
  26. Hernandez-Eligio A., Castellanos M., Moreno S., Espín G.. ( 2011;). Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS. Microbiology157:3014–3023 [CrossRef][PubMed]
    [Google Scholar]
  27. Hernandez-Eligio A., Moreno S., Castellanos M., Castañeda M., Nuñez C., Muriel-Millan L. F., Espín G.. ( 2012;). RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii . Microbiology158:1953–1963 [CrossRef][PubMed]
    [Google Scholar]
  28. Hogardt M., Roeder M., Schreff A. M., Eberl L., Heesemann J.. ( 2004;). Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology150:843–851 [CrossRef][PubMed]
    [Google Scholar]
  29. Jung K., Fried L., Behr S., Heermann R.. ( 2012;). Histidine kinases and response regulators in networks. Curr Opin Microbiol15:118–124[PubMed][CrossRef]
    [Google Scholar]
  30. Kalogeraki V. S., Winans S. C.. ( 1997;). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene188:69–75 [CrossRef][PubMed]
    [Google Scholar]
  31. Lapouge K., Schubert M., Allain F. H. T., Haas D.. ( 2008;). Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol67:241–253 [CrossRef][PubMed]
    [Google Scholar]
  32. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P.. ( 1995;). Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol17:333–343 [CrossRef][PubMed]
    [Google Scholar]
  33. Lenz D. H., Miller M. B., Zhu J., Kulkarni R. V., Bassler B. L.. ( 2005;). CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae . Mol Microbiol58:1186–1202 [CrossRef][PubMed]
    [Google Scholar]
  34. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P.. ( 2006;). SMART 5: domains in the context of genomes and networks. Nucleic Acids Res34:Database issueD257–D260 [CrossRef][PubMed]
    [Google Scholar]
  35. Llamas I., del Moral A., Béjar V., Girón M. D., Salto R., Quesada E.. ( 1997;). Plasmids from Halomonas eurihalina, a microorganism which produces an exopolysaccharide of biotechnological interest. FEMS Microbiol Lett156:251–257 [CrossRef]
    [Google Scholar]
  36. Llamas I., Argandoña M., Quesada E., del Moral A.. ( 2000;). Transposon mutagenesis in Halomonas eurihalina . Res Microbiol151:13–18 [CrossRef][PubMed]
    [Google Scholar]
  37. Llamas I., Suárez A., Quesada E., Béjar V., del Moral A.. ( 2003;). Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina . Extremophiles7:205–211[PubMed]
    [Google Scholar]
  38. Llamas I., Keshavan N., González J. E.. ( 2004;). Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol70:3715–3723 [CrossRef][PubMed]
    [Google Scholar]
  39. Llamas I., Quesada E., Martínez-Cánovas M. J., Gronquist M., Eberhard A., González J. E.. ( 2005;). Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas . Extremophiles9:333–341 [CrossRef][PubMed]
    [Google Scholar]
  40. Llamas I., del Moral A., Martínez-Checa F., Arco Y., Arias S., Quesada E.. ( 2006;). Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie van Leeuwenhoek89:395–403 [CrossRef][PubMed]
    [Google Scholar]
  41. Llamas I., Béjar V., Martínez-Checa F., Martínez-Cánovas M. J., Molina I., Quesada E.. ( 2011;). Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int J Syst Evol Microbiol61:2508–2514 [CrossRef][PubMed]
    [Google Scholar]
  42. Marketon M. M., Gronquist M. R., Eberhard A., González J. E.. ( 2002;). Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol184:5686–5695 [CrossRef][PubMed]
    [Google Scholar]
  43. Martínez-Cánovas M. J., Béjar V., Martínez-Checa F., Quesada E.. ( 2004a;). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. Int J Syst Evol Microbiol54:1329–1332 [CrossRef][PubMed]
    [Google Scholar]
  44. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V.. ( 2004b;). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol54:733–737 [CrossRef][PubMed]
    [Google Scholar]
  45. Martínez-Checa F., Béjar V., Martínez-Cánovas M. J., Llamas I., Quesada E.. ( 2005;). Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol55:2007–2011 [CrossRef][PubMed]
    [Google Scholar]
  46. Marutani M., Taguchi F., Ogawa Y., Hossain M. M., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y.. ( 2008;). Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genomics279:313–322 [CrossRef][PubMed]
    [Google Scholar]
  47. Mata J. A., Béjar V., Llamas I., Arias S., Bressollier P., Tallon R., Urdaci M. C., Quesada E.. ( 2006;). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis . Res Microbiol157:827–835 [CrossRef][PubMed]
    [Google Scholar]
  48. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Cámara M., Daykin M., Lamb J. H., Swift S.. & other authors ( 1997;). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology143:3703–3711 [CrossRef][PubMed]
    [Google Scholar]
  49. Mikkelsen H., Sivaneson M., Filloux A.. ( 2011;). Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa . Environ Microbiol13:1666–1681 [CrossRef][PubMed]
    [Google Scholar]
  50. Miller J.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Miller V. L., Mekalanos J. J.. ( 1988;). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol170:2575–2583[PubMed]
    [Google Scholar]
  52. Moraine R. A., Rogovin P.. ( 1966;). Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng8:511–524 [CrossRef]
    [Google Scholar]
  53. Newman J. R., Fuqua C.. ( 1999;). Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene227:197–203 [CrossRef][PubMed]
    [Google Scholar]
  54. Ng W. L., Bassler B. L.. ( 2009;). Bacterial quorum-sensing network architectures. Annu Rev Genet43:197–222 [CrossRef][PubMed]
    [Google Scholar]
  55. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruíz-Berraquero F.. ( 1989;). Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol55:2385–2390[PubMed]
    [Google Scholar]
  56. O’Toole G. A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  57. Ochman H., Gerber A. S., Hartl D. L.. ( 1988;). Genetic applications of an inverse polymerase chain reaction. Genetics120:621–623[PubMed]
    [Google Scholar]
  58. Ovadis M., Liu X., Gavriel S., Ismailov Z., Chet I., Chernin L.. ( 2004;). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol186:4986–4993 [CrossRef][PubMed]
    [Google Scholar]
  59. Parker C. T., Sperandio V.. ( 2009;). Cell-to-cell signalling during pathogenesis. Cell Microbiol11:363–369 [CrossRef][PubMed]
    [Google Scholar]
  60. Quandt J., Hynes M. F.. ( 1993;). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21 [CrossRef][PubMed]
    [Google Scholar]
  61. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1990;). Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int J Syst Bacteriol40:261–267 [CrossRef]
    [Google Scholar]
  62. Quesada E., Béjar V., Calvo C.. ( 1993;). Exopolysaccaharide production by Volcaniella eurihalina . Experientia49:1037–1041 [CrossRef]
    [Google Scholar]
  63. Quesada E., Moral A., Béjar V.. ( 1994;). Comparative methods for isolation of Volcaniella eurihalina exopolysaccharide. Biotechnol Tech8:701–706 [CrossRef]
    [Google Scholar]
  64. Quesada E., Béjar V., Ferrer M. R., Calvo C., Llamas I., Martínez-Checa F., Arias S., Ruíz-Garcia C., Páez R.. & other authors ( 2004;). Moderately halophilic bacteria which produce exopolysaccharides. Halophilic Microorganisms297–314 Ventosa A.. Heildeberg: Springer-Verlang;
    [Google Scholar]
  65. Quiñones B., Dulla G., Lindow S. E.. ( 2005;). Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae . Mol Plant Microbe Interact18:682–693 [CrossRef][PubMed]
    [Google Scholar]
  66. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D.. ( 1997;). The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol24:309–319 [CrossRef][PubMed]
    [Google Scholar]
  67. Rodríguez-Valera F., Ruíz-Berraquero F., Ramos-Cormenzana A.. ( 1981;). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol7:235–243 [CrossRef]
    [Google Scholar]
  68. Sambrook J., Russel D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  69. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P.. ( 2004;). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol51:973–985 [CrossRef][PubMed]
    [Google Scholar]
  70. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr, Rinehart K. L., Farrand S. K.. ( 1997;). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A94:6036–6041 [CrossRef][PubMed]
    [Google Scholar]
  71. Sutherland I. W.. ( 2001;). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147:3–9[PubMed]
    [Google Scholar]
  72. Sutherland I. W.. ( 2002;). Polysaccharides from Prokaryotes. Biopolymers. Polysaccharides I 1–19 Vandamme E. J., De Baets S., Steinbüchel A.. Weinheim: Wiley-VCH;
    [Google Scholar]
  73. Swift S., Williams P., Stewart G. S. A. B.. ( 1999;). N-Acyl homoserine lactones and quorum sensing in proteobacteria. Cell-Cell Signaling in Bacteria291–314 Dunny G. M., Winans S. C.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  74. Tahrioui A., Quesada E., Llamas I.. ( 2011;). The hanR/hanI quorum-sensing system of Halomonas anticariensis, a moderately halophilic bacterium. Microbiology157:3378–3387 [CrossRef][PubMed]
    [Google Scholar]
  75. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). MEGA4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  76. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  77. Venturi V.. ( 2003;). Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different?. Mol Microbiol49:1–9 [CrossRef][PubMed]
    [Google Scholar]
  78. West A. H., Stock A. M.. ( 2001;). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci26:369–376 [CrossRef][PubMed]
    [Google Scholar]
  79. Williams P., Stewart G. S. A. B.. ( 1994;). Cell density dependent control of gene expression in bacteria-implications for biofilm development and control. Bacterial Biofilms and their Control in Medicine and Industry9–12 Wimpenny J., Nichols W., Stickler D., Lappin-Scott H.. Cardiff: Bioline;
    [Google Scholar]
  80. Winson M. K., Cámara M., Latifi A., Foglino M., Chhabra S. R., Daykin M., Bally M., Chapon V., Salmond G. P., Bycroft B. W.. ( 1995;). Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:9427–9431 [CrossRef][PubMed]
    [Google Scholar]
  81. Winzer K., Falconer C., Garber N. C., Diggle S. P., Camara M., Williams P.. ( 2000;). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol182:6401–6411 [CrossRef][PubMed]
    [Google Scholar]
  82. Wolanin P. M., Thomason P. A., Stock J. B.. ( 2002;). Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol3:3013 [CrossRef][PubMed]
    [Google Scholar]
  83. Yan Q., Wu X. G., Wei H. L., Wang H. M., Zhang L. Q.. ( 2009;). Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system. Microbiol Res164:18–26 [CrossRef][PubMed]
    [Google Scholar]
  84. Yang L., Hu Y., Liu Y., Zhang J., Ulstrup J., Molin S.. ( 2011;). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol13:1705–1717 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061721-0
Loading
/content/journal/micro/10.1099/mic.0.061721-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error