1887

Abstract

Staphylococci are Gram-positive spherical bacteria of enormous clinical and biotechnological relevance. has been extensively studied as a model pathogen. A plethora of methods and molecular tools has been developed for genetic modification of at least ten different staphylococcal species to date. Here we review recent developments of various genetic tools and molecular methods for staphylococcal research, which include reporter systems and vectors for controllable gene expression, gene inactivation, gene essentiality testing, chromosomal integration and transposon delivery. It is furthermore illustrated how mutant strain construction by homologous or site-specific recombination benefits from sophisticated counterselection methods. The underlying genetic components have been shown to operate in wild-type staphylococci or modified chassis strains. Finally, possible future developments in the field of applied genetics are highlighted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061705-0
2013-03-01
2020-02-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/421.html?itemId=/content/journal/micro/10.1099/mic.0.061705-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Sternberg C., Poulsen L. K., Bjørn S. P., Givskov M., Molin S.. ( 1998;). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol64:2240–2246[PubMed]
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol70:6887–6891 [CrossRef][PubMed]
    [Google Scholar]
  3. Augustin J., Götz F.. ( 1990;). Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett54:203–207 [CrossRef][PubMed]
    [Google Scholar]
  4. Bae T., Schneewind O.. ( 2006;). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid55:58–63 [CrossRef][PubMed]
    [Google Scholar]
  5. Bae T., Banger A. K., Wallace A., Glass E. M., Aslund F., Schneewind O., Missiakas D. M.. ( 2004;). Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A101:12312–12317 [CrossRef][PubMed]
    [Google Scholar]
  6. Bae T., Glass E. M., Schneewind O., Missiakas D.. ( 2008;). Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis . Methods Mol Biol416:103–116 [CrossRef][PubMed]
    [Google Scholar]
  7. Bateman B. T., Donegan N. P., Jarry T. M., Palma M., Cheung A. L.. ( 2001;). Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect Immun69:7851–7857 [CrossRef][PubMed]
    [Google Scholar]
  8. Benton B. M., Zhang J. P., Bond S., Pope C., Christian T., Lee L., Winterberg K. M., Schmid M. B., Buysse J. M.. ( 2004;). Large-scale identification of genes required for full virulence of Staphylococcus aureus . J Bacteriol186:8478–8489[PubMed][CrossRef]
    [Google Scholar]
  9. Bertram R., Hillen W.. ( 2008;). The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol1:2–16[PubMed]
    [Google Scholar]
  10. Bertram R., Köstner M., Müller J., Vazquez Ramos J., Hillen W.. ( 2005;). Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res33:e153 [CrossRef][PubMed]
    [Google Scholar]
  11. Bertram R.. ( 2010;). Tetracycline-dependent gene regulation architectures in bacteria. http://tinyurl.com/tetreg . [PubMed]
    [Google Scholar]
  12. Blake K. L., O'Neill A. J.. ( 2013;). Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. J Antimicrob Chemother68:12–16[PubMed][CrossRef]
    [Google Scholar]
  13. Bose J. L., Fey P. D., Bayles K. W.. ( 2013;). Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus . Appl Environ Microbiol
    [Google Scholar]
  14. Bramucci M. G., Nagarajan V.. ( 1996;). Direct selection of cloned DNA in Bacillus subtilis based on sucrose-induced lethality. Appl Environ Microbiol62:3948–3953[PubMed]
    [Google Scholar]
  15. Brückner R.. ( 1992;). A series of shuttle vectors for Bacillus subtilis and Escherichia coli . Gene122:187–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Brückner R.. ( 1997;). Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus . FEMS Microbiol Lett151:1–8 [CrossRef][PubMed]
    [Google Scholar]
  17. Brückner R., Zyprian E., Matzura H.. ( 1984;). Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. Gene32:151–160 [CrossRef][PubMed]
    [Google Scholar]
  18. Charpentier E., Anton A. I., Barry P., Alfonso B., Fang Y., Novick R. P.. ( 2004;). Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol70:6076–6085 [CrossRef][PubMed]
    [Google Scholar]
  19. Chaudhuri R. R., Allen A. G., Owen P. J., Shalom G., Stone K., Harrison M., Burgis T. A., Lockyer M., Garcia-Lara J.. & other authors ( 2009;). Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics10:291 [CrossRef][PubMed]
    [Google Scholar]
  20. Cheetham G. M., Steitz T. A.. ( 2000;). Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol10:117–123 [CrossRef][PubMed]
    [Google Scholar]
  21. Cheung A. L., Nast C. C., Bayer A. S.. ( 1998;). Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect Immun66:5988–5993[PubMed]
    [Google Scholar]
  22. Corbiere Morot-Bizot S., Leroy S., Talon R.. ( 2007;). Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. J Appl Microbiol102:238–244 [CrossRef][PubMed]
    [Google Scholar]
  23. Corbisier P., Ji G., Nuyts G., Mergeay M., Silver S.. ( 1993;). luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett110:231–238 [CrossRef][PubMed]
    [Google Scholar]
  24. Corrigan R. M., Foster T. J.. ( 2009;). An improved tetracycline-inducible expression vector for Staphylococcus aureus . Plasmid61:126–129 [CrossRef][PubMed]
    [Google Scholar]
  25. D’Elia M. A., Pereira M. P., Chung Y. S., Zhao W., Chau A., Kenney T. J., Sulavik M. C., Black T. A., Brown E. D.. ( 2006;). Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol188:4183–4189 [CrossRef][PubMed]
    [Google Scholar]
  26. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  27. DeLeo F. R., Otto M., Kreiswirth B. N., Chambers H. F.. ( 2010;). Community-associated meticillin-resistant Staphylococcus aureus . Lancet375:1557–1568 [CrossRef][PubMed]
    [Google Scholar]
  28. Fan F., Lunsford R. D., Sylvester D., Fan J., Celesnik H., Iordanescu S., Rosenberg M., McDevitt D.. ( 2001;). Regulated ectopic expression and allelic-replacement mutagenesis as a method for gene essentiality testing in Staphylococcus aureus . Plasmid46:71–75 [CrossRef][PubMed]
    [Google Scholar]
  29. Felden B., Vandenesch F., Bouloc P., Romby P.. ( 2011;). The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog7:e1002006 [CrossRef][PubMed]
    [Google Scholar]
  30. Fey P. D., Endres J. L., Yajjala V. K., Widhelm T. J., Boissy R. J., Bose J. L., Bayles K. W.. ( 2013;). A genetic resource for rapid and comprehensive phenotype screening of non-essential Staphylococcus aureus genes . mBio[PubMed]
    [Google Scholar]
  31. Firth N., Apisiridej S., Berg T., O’Rourke B. A., Curnock S., Dyke K. G., Skurray R. A.. ( 2000;). Replication of staphylococcal multiresistance plasmids. J Bacteriol182:2170–2178 [CrossRef][PubMed]
    [Google Scholar]
  32. Forsyth R. A., Haselbeck R. J., Ohlsen K. L., Yamamoto R. T., Xu H., Trawick J. D., Wall D., Wang L., Brown-Driver V.. & other authors ( 2002;). A genome-wide strategy for the identification of essential genes in Staphylococcus aureus . Mol Microbiol43:1387–1400 [CrossRef][PubMed]
    [Google Scholar]
  33. Francis K. P., Joh D., Bellinger-Kawahara C., Hawkinson M. J., Purchio T. F., Contag P. R.. ( 2000;). Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun68:3594–3600 [CrossRef][PubMed]
    [Google Scholar]
  34. Franke G. C., Dobinsky S., Mack D., Wang C. J., Sobottka I., Christner M., Knobloch J. K., Horstkotte M. A., Aepfelbacher M., Rohde H.. ( 2007;). Expression and functional characterization of gfpmut3.1 and its unstable variants in Staphylococcus epidermidis . J Microbiol Methods71:123–132 [CrossRef][PubMed]
    [Google Scholar]
  35. Gauger T., Weihs F., Mayer S., Krismer B., Liese J., Kull M., Bertram R.. ( 2012;). Intracellular monitoring of target protein production in Staphylococcus aureus by peptide tag-induced reporter fluorescence. Microb Biotechnol5:129–134 [CrossRef][PubMed]
    [Google Scholar]
  36. Geiger T., Francois P., Liebeke M., Fraunholz M., Goerke C., Krismer B., Schrenzel J., Lalk M., Wolz C.. ( 2012;). The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog8:e1003016 [CrossRef][PubMed]
    [Google Scholar]
  37. Geissendörfer M., Hillen W.. ( 1990;). Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl Microbiol Biotechnol33:657–663 [CrossRef][PubMed]
    [Google Scholar]
  38. Gennaro M. L., Kornblum J., Novick R. P.. ( 1987;). A site-specific recombination function in Staphylococcus aureus plasmids. J Bacteriol169:2601–2610[PubMed]
    [Google Scholar]
  39. Ghebremedhin B., Layer F., König W., König B.. ( 2008;). Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol46:1019–1025 [CrossRef][PubMed]
    [Google Scholar]
  40. Goryshin I. Y., Jendrisak J., Hoffman L. M., Meis R., Reznikoff W. S.. ( 2000;). Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol18:97–100 [CrossRef][PubMed]
    [Google Scholar]
  41. Götz F.. ( 1990;). Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc Appl Bacteriol Symp Ser69:s1949S–53S [CrossRef][PubMed]
    [Google Scholar]
  42. Götz F., Schumacher B.. ( 1987;). Improvements of protoplast transformation in Staphylococcus carnosus . FEMS Microbiol Lett40:285–288 [CrossRef]
    [Google Scholar]
  43. Götz F., Bannerman T., Schleifer K.-H.. ( 2006;). The genera Staphylococcus and Macrococcus . Prokaryotes5–75 Dworkin M.. New York: Springer; [CrossRef]
    [Google Scholar]
  44. Grindley N. D., Whiteson K. L., Rice P. A.. ( 2006;). Mechanisms of site-specific recombination. Annu Rev Biochem75:567–605 [CrossRef][PubMed]
    [Google Scholar]
  45. Grkovic S., Brown M. H., Skurray R. A.. ( 2002;). Regulation of bacterial drug export systems. Microbiol Mol Biol Rev66:671–701 [CrossRef][PubMed]
    [Google Scholar]
  46. Grkovic S., Brown M. H., Hardie K. M., Firth N., Skurray R. A.. ( 2003;). Stable low-copy-number Staphylococcus aureus shuttle vectors. Microbiology149:785–794 [CrossRef][PubMed]
    [Google Scholar]
  47. Grueter L., Koenig O., Laufs R.. ( 1991;). Transposon mutagenesis in Staphylococcus epidermidis using the Enterococcus faecalis transposon Tn917 . FEMS Microbiol Lett82:215–218 [CrossRef][PubMed]
    [Google Scholar]
  48. Gründling A., Schneewind O.. ( 2007a;). Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus . Proc Natl Acad Sci U S A104:8478–8483 [CrossRef][PubMed]
    [Google Scholar]
  49. Gründling A., Schneewind O.. ( 2007b;). Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus . J Bacteriol189:2521–2530 [CrossRef][PubMed]
    [Google Scholar]
  50. Halfmann G., Götz F., Lubitz W.. ( 1993;). Expression of bacteriophage PhiX174 lysis gene E in Staphylococcus carnosus TM300. FEMS Microbiol Lett108:139–143 [CrossRef][PubMed]
    [Google Scholar]
  51. Hayes F.. ( 2003;). Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet37:3–29 [CrossRef][PubMed]
    [Google Scholar]
  52. Helle L., Kull M., Mayer S., Marincola G., Zelder M. E., Goerke C., Wolz C., Bertram R.. ( 2011;). Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus . Microbiology157:3314–3323 [CrossRef][PubMed]
    [Google Scholar]
  53. Hentschel E., Will C., Mustafi N., Burkovski A., Rehm N., Frunzke J.. ( 2012;). Destabilized eYFP variants for dynamic gene expression studies in Corynebacterium glutamicum . Microb Biotechnol [CrossRef][PubMed]
    [Google Scholar]
  54. Herbert S., Ziebandt A. K., Ohlsen K., Schäfer T., Hecker M., Albrecht D., Novick R., Götz F.. ( 2010;). Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun78:2877–2889 [CrossRef][PubMed]
    [Google Scholar]
  55. Huber J., Donald R. G., Lee S. H., Jarantow L. W., Salvatore M. J., Meng X., Painter R., Onishi R. H., Occi J., Dorso K.. ( 2009;). Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus . Chem Biol16:837–848 [CrossRef][PubMed]
    [Google Scholar]
  56. Hueck C. J., Hillen W., Saier M. H. Jr. ( 1994;). Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol145:503–518 [CrossRef][PubMed]
    [Google Scholar]
  57. Hussain M., Becker K., von Eiff C., Schrenzel J., Peters G., Herrmann M.. ( 2001;). Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol183:6778–6786 [CrossRef][PubMed]
    [Google Scholar]
  58. Jana M., Luong T. T., Komatsuzawa H., Shigeta M., Lee C. Y.. ( 2000;). A method for demonstrating gene essentiality in Staphylococcus aureus . Plasmid44:100–104 [CrossRef][PubMed]
    [Google Scholar]
  59. Ji Y., Marra A., Rosenberg M., Woodnutt G.. ( 1999;). Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol181:6585–6590[PubMed]
    [Google Scholar]
  60. Ji Y., Zhang B., Van S. F., Horn, Warren P., Woodnutt G., Burnham M. K., Rosenberg M.. ( 2001;). Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science293:2266–2269 [CrossRef][PubMed]
    [Google Scholar]
  61. Kahl B. C., Goulian M., van Wamel W., Herrmann M., Simon S. M., Kaplan G., Peters G., Cheung A. L.. ( 2000;). Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun68:5385–5392 [CrossRef][PubMed]
    [Google Scholar]
  62. Kamionka A., Bogdanska-Urbaniak J., Scholz O., Hillen W.. ( 2004;). Two mutations in the tetracycline repressor change the inducer anhydrotetracycline to a corepressor. Nucleic Acids Res32:842–847 [CrossRef][PubMed]
    [Google Scholar]
  63. Kato F., Sugai M.. ( 2011;). A simple method of markerless gene deletion in Staphylococcus aureus . J Microbiol Methods87:76–81 [CrossRef][PubMed]
    [Google Scholar]
  64. Kellner R., Jung G., Hörner T., Zähner H., Schnell N., Entian K. D., Götz F.. ( 1988;). Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem177:53–59 [CrossRef][PubMed]
    [Google Scholar]
  65. Kloos W., Schleifer K. H., Götz F.. ( 1991;). The genus Staphylococcus . The Prokaryotes1369–1420 Balows B., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. London: Springer;
    [Google Scholar]
  66. Klotzsche M., Berens C., Hillen W.. ( 2005;). A peptide triggers allostery in tet repressor by binding to a unique site. J Biol Chem280:24591–24599 [CrossRef][PubMed]
    [Google Scholar]
  67. Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. ( 1983;). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305:709–712 [CrossRef][PubMed]
    [Google Scholar]
  68. Krismer B.. ( 1999;).galRKETStaphylococcus carnosus
  69. Krismer B., Nega M., Thumm G., Götz F., Peschel A.. ( 2012;). Highly efficient Staphylococcus carnosus mutant selection system based on suicidal bacteriocin activation. Appl Environ Microbiol78:1148–1156 [CrossRef][PubMed]
    [Google Scholar]
  70. Lampe D. J., Churchill M. E., Robertson H. M.. ( 1996;). A purified mariner transposase is sufficient to mediate transposition in vitro . EMBO J15:5470–5479[PubMed]
    [Google Scholar]
  71. Lauderdale K. J., Boles B. R., Cheung A. L., Horswill A. R.. ( 2009;). Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun77:1623–1635 [CrossRef][PubMed]
    [Google Scholar]
  72. Lee C. Y., Iandolo J. J.. ( 1986a;). Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc Natl Acad Sci U S A83:5474–5478 [CrossRef][PubMed]
    [Google Scholar]
  73. Lee C. Y., Iandolo J. J.. ( 1986b;). Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J Bacteriol166:385–391[PubMed]
    [Google Scholar]
  74. Lee C. Y., Buranen S. L., Ye Z. H.. ( 1991;). Construction of single-copy integration vectors for Staphylococcus aureus . Gene103:101–105 [CrossRef][PubMed]
    [Google Scholar]
  75. Lei M. G., Cue D., Alba J., Junecko J., Graham J. W., Lee C. Y.. ( 2012;). A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome. BMC Res Notes5:5 [CrossRef][PubMed]
    [Google Scholar]
  76. Leibig M., Krismer B., Kolb M., Friede A., Götz F., Bertram R.. ( 2008;). Marker removal in staphylococci via Cre recombinase and different lox sites. Appl Environ Microbiol74:1316–1323 [CrossRef][PubMed]
    [Google Scholar]
  77. Levy S. B., Marshall B.. ( 2004;). Antibacterial resistance worldwide: causes, challenges and responses. Nat Med10:Suppl.S122–S129 [CrossRef][PubMed]
    [Google Scholar]
  78. Li M., Rigby K., Lai Y., Nair V., Peschel A., Schittek B., Otto M.. ( 2009;). Staphylococcus aureus mutant screen reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. Antimicrob Agents Chemother53:4200–4210 [CrossRef][PubMed]
    [Google Scholar]
  79. Liese J., Rooijakkers S. H., van Strijp J. A., Novick R. P., Dustin M. L.. ( 2012;). Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell Microbiol [CrossRef][PubMed]
    [Google Scholar]
  80. Liew A. T., Theis T., Jensen S. O., Garcia-Lara J., Foster S. J., Firth N., Lewis P. J., Harry E. J.. ( 2011;). A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus . Microbiology157:666–676 [CrossRef][PubMed]
    [Google Scholar]
  81. Löfblom J., Kronqvist N., Uhlén M., Ståhl S., Wernérus H.. ( 2007;). Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J Appl Microbiol102:736–747 [CrossRef][PubMed]
    [Google Scholar]
  82. Lowe A. M., Beattie D. T., Deresiewicz R. L.. ( 1998;). Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol27:967–976 [CrossRef][PubMed]
    [Google Scholar]
  83. Lowy F. D.. ( 1998;). Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  84. Luong T. T., Lee C. Y.. ( 2007;). Improved single-copy integration vectors for Staphylococcus aureus . J Microbiol Methods70:186–190 [CrossRef][PubMed]
    [Google Scholar]
  85. Mainiero M., Goerke C., Geiger T., Gonser C., Herbert S., Wolz C.. ( 2010;). Differential target gene activation by the Staphylococcus aureus two-component system saeRS . J Bacteriol192:613–623 [CrossRef][PubMed]
    [Google Scholar]
  86. Malone C. L., Boles B. R., Lauderdale K. J., Thoendel M., Kavanaugh J. S., Horswill A. R.. ( 2009;). Fluorescent reporters for Staphylococcus aureus . J Microbiol Methods77:251–260 [CrossRef][PubMed]
    [Google Scholar]
  87. Marlinghaus L., Becker K., Korte M., Neumann S., Gatermann S. G., Szabados F.. ( 2012;). Construction and characterization of three knockout mutants of the fbl gene in Staphylococcus lugdunensis . APMIS120:108–116 [CrossRef][PubMed]
    [Google Scholar]
  88. McNamara P.. ( 2008;). Genetic manipulation of Staphylococcus aureus . Staphylococcus Molecular Genetics89–130 Lindsay J. A.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  89. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W.. ( 1997;). Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol26:399–407 [CrossRef][PubMed]
    [Google Scholar]
  90. Meighen E. A.. ( 1991;). Molecular biology of bacterial bioluminescence. Microbiol Rev55:123–142[PubMed]
    [Google Scholar]
  91. Meighen E. A.. ( 1993;). Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J7:1016–1022[PubMed]
    [Google Scholar]
  92. Mesak L. R., Yim G., Davies J.. ( 2009;). Improved lux reporters for use in Staphylococcus aureus . Plasmid61:182–187 [CrossRef][PubMed]
    [Google Scholar]
  93. Mesak L. R., Qi S., Villanueva I., Miao V., Davies J.. ( 2010;). Staphylococcus aureus promoter-lux reporters for drug discovery. J Antibiot (Tokyo)63:492–498 [CrossRef][PubMed]
    [Google Scholar]
  94. Monk I. R., Foster T. J.. ( 2012;). Genetic manipulation of Staphylococci-breaking through the barrier. Front Cell Infect Microbiol2:49[PubMed][CrossRef]
    [Google Scholar]
  95. Monk I. R., Shah I. M., Xu M., Tan M. W., Foster T. J.. ( 2012;). Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio3:e00277-11 [CrossRef][PubMed]
    [Google Scholar]
  96. Morikawa K., Inose Y., Okamura H., Maruyama A., Hayashi H., Takeyasu K., Ohta T.. ( 2003;). A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells8:699–712 [CrossRef][PubMed]
    [Google Scholar]
  97. Morikawa K., Takemura A. J., Inose Y., Tsai M., Nguyen Thi T., Ohta T., Msadek T.. ( 2012;). Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus . PLoS Pathog8:e1003003 [CrossRef][PubMed]
    [Google Scholar]
  98. Murray R. W., Melchior E. P., Hagadorn J. C., Marotti K. R.. ( 2001;). Staphylococcus aureus cell extract transcription-translation assay: firefly luciferase reporter system for evaluating protein translation inhibitors. Antimicrob Agents Chemother45:1900–1904 [CrossRef][PubMed]
    [Google Scholar]
  99. Novick R. P.. ( 1989;). Staphylococcal plasmids and their replication. Annu Rev Microbiol43:537–563 [CrossRef][PubMed]
    [Google Scholar]
  100. Novick R. P.. ( 1991;). Genetic systems in staphylococci. Methods Enzymol204:587–636 [CrossRef][PubMed]
    [Google Scholar]
  101. O’Reilly M., de Azavedo J. C., Kennedy S., Foster T. J.. ( 1986;). Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysins. Microb Pathog1:125–138 [CrossRef][PubMed]
    [Google Scholar]
  102. Ohlsen K., Koller K. P., Hacker J.. ( 1997;). Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla:lacZ gene fusion. Infect Immun65:3606–3614[PubMed]
    [Google Scholar]
  103. Otto M.. ( 2009;). Staphylococcus epidermidis–the ‘accidental’ pathogen. Nat Rev Microbiol7:555–567 [CrossRef][PubMed]
    [Google Scholar]
  104. Otto M., Süßmuth R., Jung G., Götz F.. ( 1998;). Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett424:89–94 [CrossRef][PubMed]
    [Google Scholar]
  105. Pagels M., Fuchs S., Pané-Farré J., Kohler C., Menschner L., Hecker M., McNamarra P. J., Bauer M. C., von Wachenfeldt C.. & other authors ( 2010;). Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus . Mol Microbiol76:1142–1161 [CrossRef][PubMed]
    [Google Scholar]
  106. Pajunen M. I., Pulliainen A. T., Finne J., Savilahti H.. ( 2005;). Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes. Microbiology151:1209–1218 [CrossRef][PubMed]
    [Google Scholar]
  107. Pantůček R., Svec P., Dajcs J. J., Machová I., Cernohlávková J., Sedo O., Gelbíčová T., Mašlaňová I., Doškař J., Zdráhal Z., Růžičková V., Sedláček I.. ( 2013;). Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst Appl Microbiol[PubMed]
    [Google Scholar]
  108. Paprotka K., Giese B., Fraunholz M. J.. ( 2010;). Codon-improved fluorescent proteins in investigation of Staphylococcus aureus host pathogen interactions. J Microbiol Methods83:82–86 [CrossRef][PubMed]
    [Google Scholar]
  109. Pédelacq J. D., Cabantous S., Tran T., Terwilliger T. C., Waldo G. S.. ( 2006;). Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol24:79–88 [CrossRef][PubMed]
    [Google Scholar]
  110. Pereira P. M., Veiga H., Jorge A. M., Pinho M. G.. ( 2010;). Fluorescent reporters for studies of cellular localization of proteins in Staphylococcus aureus . Appl Environ Microbiol76:4346–4353 [CrossRef][PubMed]
    [Google Scholar]
  111. Peschel A., Ottenwälder B., Götz F.. ( 1996;). Inducible production and cellular location of the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. FEMS Microbiol Lett137:279–284 [CrossRef][PubMed]
    [Google Scholar]
  112. Place R. B., Hiestand D., Gallmann H. R., Teuber M.. ( 2003;). Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst Appl Microbiol26:30–37 [CrossRef][PubMed]
    [Google Scholar]
  113. Pósfai G., Kolisnychenko V., Bereczki Z., Blattner F. R.. ( 1999;). Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res27:4409–4415 [CrossRef][PubMed]
    [Google Scholar]
  114. Qazi S. N., Counil E., Morrissey J., Rees C. E., Cockayne A., Winzer K., Chan W. C., Williams P., Hill P. J.. ( 2001a;). agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect Immun69:7074–7082 [CrossRef][PubMed]
    [Google Scholar]
  115. Qazi S. N., Rees C. E., Mellits K. H., Hill P. J.. ( 2001b;). Development of gfp vectors for expression in Listeria monocytogenes and other low G+C Gram positive bacteria. Microb Ecol41:301–309[PubMed]
    [Google Scholar]
  116. Qazi S. N., Harrison S. E., Self T., Williams P., Hill P. J.. ( 2004;). Real-time monitoring of intracellular Staphylococcus aureus replication. J Bacteriol186:1065–1077 [CrossRef][PubMed]
    [Google Scholar]
  117. Redder P., Linder P.. ( 2012;). New range of vectors with a stringent 5-fluoroorotic acid-based counterselection system for generating mutants by allelic replacement in Staphylococcus aureus . Appl Environ Microbiol78:3846–3854 [CrossRef][PubMed]
    [Google Scholar]
  118. Reznikoff W. S.. ( 2003;). Tn5 as a model for understanding DNA transposition. Mol Microbiol47:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  119. Reznikoff W. S., Bhasin A., Davies D. R., Goryshin I. Y., Mahnke L. A., Naumann T., Rayment I., Steiniger-White M., Twining S. S.. ( 1999;). Tn5: A molecular window on transposition. Biochem Biophys Res Commun266:729–734 [CrossRef][PubMed]
    [Google Scholar]
  120. Sastalla I., Chim K., Cheung G. Y., Pomerantsev A. P., Leppla S. H.. ( 2009;). Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria. Appl Environ Microbiol75:2099–2110 [CrossRef][PubMed]
    [Google Scholar]
  121. Sauer B.. ( 2004;). Chromosome manipulation by Cre-lox recombination. Mobile DNA II38–58 Craig N. L., Craigie R., Gellert M., Lambowitz A. M.. Washington, DC: ASM Press;
    [Google Scholar]
  122. Schofield D. A., Westwater C., Hoel B. D., Werner P. A., Norris J. S., Schmidt M. G.. ( 2003;). Development of a thermally regulated broad-spectrum promoter system for use in pathogenic gram-positive species. Appl Environ Microbiol69:3385–3392 [CrossRef][PubMed]
    [Google Scholar]
  123. Scholz O., Henßler E.-M., Bail J., Schubert P., Bogdanska-Urbaniak J., Sopp S., Reich M., Wisshak S., Köstner M.. & other authors ( 2004;). Activity reversal of Tet repressor caused by single amino acid exchanges. Mol Microbiol53:777–789 [CrossRef][PubMed]
    [Google Scholar]
  124. Sheehan B. J., Foster T. J., Dorman C. J., Park S., Stewart G. S.. ( 1992;). Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol Gen Genet232:49–57 [CrossRef][PubMed]
    [Google Scholar]
  125. Sizemore C., Buchner E., Rygus T., Witke C., Götz F., Hillen W.. ( 1991;). Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol Gen Genet227:377–384 [CrossRef][PubMed]
    [Google Scholar]
  126. Sizemore C., Wieland B., Götz F., Hillen W.. ( 1992;). Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol174:3042–3048[PubMed]
    [Google Scholar]
  127. Southward C. M., Surette M. G.. ( 2002;). The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol45:1191–1196 [CrossRef][PubMed]
    [Google Scholar]
  128. Stary E., Gaupp R., Lechner S., Leibig M., Tichy E., Kolb M., Bertram R.. ( 2010;). New architectures for Tet-on and Tet-off regulation in Staphylococcus aureus . Appl Environ Microbiol76:680–687 [CrossRef][PubMed]
    [Google Scholar]
  129. Steidler L., Yu W., Fiers W., Remaut E.. ( 1996;). The expression of the Photinus pyralis luciferase gene in Staphylococcus aureus Cowan I allows the development of a live amplifiable tool for immunodetection. Appl Environ Microbiol62:2356–2359[PubMed]
    [Google Scholar]
  130. Stewart P. R., Waldron H. G., Lee J. S., Matthews P. R.. ( 1985;). Molecular relationships among serogroup B bacteriophages of Staphylococcus aureus . J Virol55:111–116[PubMed]
    [Google Scholar]
  131. Takahashi T., Satoh I., Kikuchi N.. ( 1999;). Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol49:725–728 [CrossRef][PubMed]
    [Google Scholar]
  132. Terpe K.. ( 2006;). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol72:211–222 [CrossRef][PubMed]
    [Google Scholar]
  133. Topp S., Reynoso C. M., Seeliger J. C., Goldlust I. S., Desai S. K., Murat D., Shen A., Puri A. W., Komeili A.. & other authors ( 2010;). Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol76:7881–7884 [CrossRef][PubMed]
    [Google Scholar]
  134. van Kessel J. C., Hatfull G. F.. ( 2008;). Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol67:1094–1107 [CrossRef][PubMed]
    [Google Scholar]
  135. van Pijkeren J. P., Britton R. A.. ( 2012;). High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res40:e76 [CrossRef][PubMed]
    [Google Scholar]
  136. Vandenesch F., Kornblum J., Novick R. P.. ( 1991;). A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus . J Bacteriol173:6313–6320[PubMed]
    [Google Scholar]
  137. Waldron D. E., Lindsay J. A.. ( 2006;). Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol188:5578–5585 [CrossRef][PubMed]
    [Google Scholar]
  138. Wang P. Z., Projan S. J., Leason K. R., Novick R. P.. ( 1987;). Translational fusion with a secretory enzyme as an indicator. J Bacteriol169:3082–3087[PubMed]
    [Google Scholar]
  139. Wieland K. P., Wieland B., Götz F.. ( 1995;). A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus . Gene158:91–96 [CrossRef][PubMed]
    [Google Scholar]
  140. Wittmann A., Suess B.. ( 2012;). Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett586:2076–2083 [CrossRef][PubMed]
    [Google Scholar]
  141. Xia M., Lunsford R. D., McDevitt D., Iordanescu S.. ( 1999;). Rapid method for the identification of essential genes in Staphylococcus aureus . Plasmid42:144–149 [CrossRef][PubMed]
    [Google Scholar]
  142. Xu H. H., Trawick J. D., Haselbeck R. J., Forsyth R. A., Yamamoto R. T., Archer R., Patterson J., Allen M., Froelich J. M.. & other authors ( 2010;). Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob Agents Chemother54:3659–3670 [CrossRef][PubMed]
    [Google Scholar]
  143. Xu S. Y., Corvaglia A. R., Chan S. H., Zheng Y., Linder P.. ( 2011;). A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res39:5597–5610 [CrossRef][PubMed]
    [Google Scholar]
  144. Yamachika S., Onodera Y., Hiramatsu K., Takase H.. ( 2012;). Plasmid integration method: a new tool for analysis of the essentiality and function of genes in S. aureus . J Microbiol Methods90:250–255 [CrossRef][PubMed]
    [Google Scholar]
  145. Yansura D. G., Henner D. J.. ( 1984;). Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis . Proc Natl Acad Sci U S A81:439–443 [CrossRef][PubMed]
    [Google Scholar]
  146. Yao J., Zhong J., Fang Y., Geisinger E., Novick R. P., Lambowitz A. M.. ( 2006;). Use of targetrons to disrupt essential and nonessential genes in Staphylococcus aureus reveals temperature sensitivity of Ll.LtrB group II intron splicing. RNA12:1271–1281 [CrossRef][PubMed]
    [Google Scholar]
  147. Yu W., Götz F.. ( 2012;). Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus . PLoS ONE7:e30076 [CrossRef][PubMed]
    [Google Scholar]
  148. Zhang Y., Buchholz F., Muyrers J. P., Stewart A. F.. ( 1998;). A new logic for DNA engineering using recombination in Escherichia coli . Nat Genet20:123–128 [CrossRef][PubMed]
    [Google Scholar]
  149. Zhang L., Fan F., Palmer L. M., Lonetto M. A., Petit C., Voelker L. R., St John A., Bankosky B., Rosenberg M., McDevitt D.. ( 2000;). Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene255:297–305 [CrossRef][PubMed]
    [Google Scholar]
  150. Zheng L., Yang J., Landwehr C., Fan F., Ji Y.. ( 2005;). Identification of an essential glycoprotease in Staphylococcus aureus . FEMS Microbiol Lett245:279–285 [CrossRef][PubMed]
    [Google Scholar]
  151. Zoraghi R., See R. H., Gong H., Lian T., Swayze R., Finlay B. B., Brunham R. C., McMaster W. R., Reiner N. E.. ( 2010;). Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus . Biochemistry49:7733–7747 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061705-0
Loading
/content/journal/micro/10.1099/mic.0.061705-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error