1887

Abstract

The type III secretion systems (T3SSs) are exploited by many Gram-negative pathogenic bacteria to deliver a set of effector proteins into the host cytosol during cell entry. The T3SS of serovar Typhimurium is composed of more than 20 proteins that constitute the membrane-associated base, the needle and the tip complex at the distal end of the T3SS needle. Membrane docking and piercing between the T3SS and host cells is followed by the secretion of effector proteins. Therefore, a secretion hierarchy among the substrates of the T3SS is required. The secretion of the pore-forming translocase proteins SipB, SipC and SipD is controlled by the T3SS regulator protein, InvE. During an attempt to identify the regions of InvE that are involved in T3SS regulation, it was observed that the secretion of SipB, SipC and SipD was inhibited when the C-terminal 52 amino acids were removed from InvE. In addition, InvE derivatives lacking the N-terminal 30 and 100 residues were unable to secrete translocases into the culture medium. Interestingly, in the absence of the N-terminal 180 residues of InvE, SipD is unstable, resulting in the hypersecretion of SipB. We also found that both the type III secretion signals of SipB and SptP were functionally interchangeable with the first 30 amino acids of InvE, which could allow the secretion of a reporter protein. These results indicate that InvE may have two functional domains responsible for regulating the secretion of translocases: an N-terminal secretion signal and a C-terminal regulatory domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061689-0
2013-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/446.html?itemId=/content/journal/micro/10.1099/mic.0.061689-0&mimeType=html&fmt=ahah

References

  1. Archuleta T. L., Du Y., English C. A., Lory S., Lesser C., Ohi M. D., Ohi R., Spiller B. W.( 2011). The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem 286:33992–33998 [View Article][PubMed]
    [Google Scholar]
  2. Botteaux A., Sory M. P., Biskri L., Parsot C., Allaoui A.( 2009). MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 71:449–460 [View Article][PubMed]
    [Google Scholar]
  3. Chan R. K., Botstein D., Watanabe T., Ogata Y.( 1972). Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology 50:883–898 [View Article][PubMed]
    [Google Scholar]
  4. Chatfield S. N., Charles I. G., Makoff A. J., Oxer M. D., Dougan G., Pickard D., Slater D., Fairweather N. F.( 1992). Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology (N Y) 10:888–892 [View Article][PubMed]
    [Google Scholar]
  5. Cheng L. W., Kay O., Schneewind O.( 2001). Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 183:5293–5301 [View Article][PubMed]
    [Google Scholar]
  6. Crump J. A., Mintz E. D.( 2010). Global trends in typhoid and paratyphoid fever. Clin Infect Dis 50:241–246 [View Article][PubMed]
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L.( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  8. Deane J. E., Roversi P., King C., Johnson S., Lea S. M.( 2008). Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol 377:985–992 [View Article][PubMed]
    [Google Scholar]
  9. Deane J. E., Abrusci P., Johnson S., Lea S. M.( 2010). Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075 [View Article][PubMed]
    [Google Scholar]
  10. Delahay R. M., Frankel G.( 2002). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 45:905–916 [View Article][PubMed]
    [Google Scholar]
  11. Deng W., Li Y., Hardwidge P. R., Frey E. A., Pfuetzner R. A., Lee S., Gruenheid S., Strynakda N. C., Puente J. L., Finlay B. B.( 2005). Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146 [View Article][PubMed]
    [Google Scholar]
  12. Ehrbar K., Winnen B., Hardt W. D.( 2006). The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol 59:248–264 [View Article][PubMed]
    [Google Scholar]
  13. Fields K. A., Hackstadt T.( 2000). Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38:1048–1060 [View Article][PubMed]
    [Google Scholar]
  14. Galán J. E., Wolf-Watz H.( 2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573 [View Article][PubMed]
    [Google Scholar]
  15. Giacomodonato M. N., Uzzau S., Bacciu D., Caccuri R., Sarnacki S. H., Rubino S., Cerquetti M. C.( 2007). SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153:1221–1228 [View Article][PubMed]
    [Google Scholar]
  16. Ginocchio C., Pace J., Galán J. E.( 1992). Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc Natl Acad Sci U S A 89:5976–5980 [View Article][PubMed]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J.( 1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130[PubMed]
    [Google Scholar]
  18. Hueck C. J.( 1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433[PubMed]
    [Google Scholar]
  19. Jang J. I., Kim J. S., Eom J. S., Kim H. G., Kim B. H., Lim S., Bang I. S., Park Y. K.( 2012). Expression and delivery of tetanus toxin fragment C fused to the N-terminal domain of SipB enhances specific immune responses in mice. Microbiol Immunol 56:595–604 [View Article][PubMed]
    [Google Scholar]
  20. Kaniga K., Trollinger D., Galán J. E.( 1995). Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J Bacteriol 177:7078–7085[PubMed]
    [Google Scholar]
  21. Kim B. H., Kim H. G., Kim J. S., Jang J. I., Park Y. K.( 2007). Analysis of functional domains present in the N-terminus of the SipB protein. Microbiology 153:2998–3008 [View Article][PubMed]
    [Google Scholar]
  22. Kim H. G., Kim B. H., Kim J. S., Eom J. S., Bang I. S., Bang S. H., Lee I. S., Park Y. K.( 2008). N-terminal residues of SipB are required for its surface localization on Salmonella enterica serovar Typhimurium. Microbiology 154:207–216 [View Article][PubMed]
    [Google Scholar]
  23. Kubori T., Galán J. E.( 2002). Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol 184:4699–4708 [View Article][PubMed]
    [Google Scholar]
  24. Lara-Tejero M., Galán J. E.( 2009). Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642 [View Article][PubMed]
    [Google Scholar]
  25. Lara-Tejero M., Kato J., Wagner S., Liu X., Galán J. E.( 2011). A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191 [View Article][PubMed]
    [Google Scholar]
  26. Lee S. H., Galán J. E.( 2004). Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495 [View Article][PubMed]
    [Google Scholar]
  27. Ly K. T., Casanova J. E.( 2007). Mechanisms of Salmonella entry into host cells. Cell Microbiol 9:2103–2111 [View Article][PubMed]
    [Google Scholar]
  28. Martinez-Argudo I., Blocker A. J.( 2010). The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78:1365–1378 [View Article][PubMed]
    [Google Scholar]
  29. Matteï P. J., Faudry E., Job V., Izoré T., Attree I., Dessen A.( 2011). Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278:414–426 [View Article][PubMed]
    [Google Scholar]
  30. Moreno M., Audia J. P., Bearson S. M., Webb C., Foster J. W.( 2000). Regulation of sigma S degradation in Salmonella enterica var typhimurium: in vivo interactions between sigma S, the response regulator MviA(RssB) and ClpX. J Mol Microbiol Biotechnol 2:245–254[PubMed]
    [Google Scholar]
  31. Ochman H., Groisman E. A.( 1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64:5410–5412[PubMed]
    [Google Scholar]
  32. Osborne S. E., Coombes B. K.( 2011). Expression and secretion hierarchy in the nonflagellar type III secretion system. Future Microbiol 6:193–202 [View Article][PubMed]
    [Google Scholar]
  33. Pallen M. J., Beatson S. A., Bailey C. M.( 2005). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5:9 [View Article][PubMed]
    [Google Scholar]
  34. Samudrala R., Heffron F., McDermott J. E.( 2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5:e1000375 [View Article][PubMed]
    [Google Scholar]
  35. Schubot F. D., Jackson M. W., Penrose K. J., Cherry S., Tropea J. E., Plano G. V., Waugh D. S.( 2005). Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346:1147–1161 [View Article][PubMed]
    [Google Scholar]
  36. Tree J. J., Wolfson E. B., Wang D., Roe A. J., Gally D. L.( 2009). Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 17:361–370 [View Article][PubMed]
    [Google Scholar]
  37. Uzzau S., Figueroa-Bossi N., Rubino S., Bossi L.( 2001). Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98:15264–15269 [View Article][PubMed]
    [Google Scholar]
  38. Wang D., Roe A. J., McAteer S., Shipston M. J., Gally D. L.( 2008). Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69:1499–1512 [View Article][PubMed]
    [Google Scholar]
  39. Wray C., Sojka W. J.( 1978). Experimental Salmonella typhimurium infection in calves. Res Vet Sci 25:139–143[PubMed]
    [Google Scholar]
  40. Younis R., Bingle L. E., Rollauer S., Munera D., Busby S. J., Johnson S., Deane J. E., Lea S. M., Frankel G., Pallen M. J.( 2010). SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. J Bacteriol 192:6093–6098 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061689-0
Loading
/content/journal/micro/10.1099/mic.0.061689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error