1887

Abstract

The type III secretion systems (T3SSs) are exploited by many Gram-negative pathogenic bacteria to deliver a set of effector proteins into the host cytosol during cell entry. The T3SS of serovar Typhimurium is composed of more than 20 proteins that constitute the membrane-associated base, the needle and the tip complex at the distal end of the T3SS needle. Membrane docking and piercing between the T3SS and host cells is followed by the secretion of effector proteins. Therefore, a secretion hierarchy among the substrates of the T3SS is required. The secretion of the pore-forming translocase proteins SipB, SipC and SipD is controlled by the T3SS regulator protein, InvE. During an attempt to identify the regions of InvE that are involved in T3SS regulation, it was observed that the secretion of SipB, SipC and SipD was inhibited when the C-terminal 52 amino acids were removed from InvE. In addition, InvE derivatives lacking the N-terminal 30 and 100 residues were unable to secrete translocases into the culture medium. Interestingly, in the absence of the N-terminal 180 residues of InvE, SipD is unstable, resulting in the hypersecretion of SipB. We also found that both the type III secretion signals of SipB and SptP were functionally interchangeable with the first 30 amino acids of InvE, which could allow the secretion of a reporter protein. These results indicate that InvE may have two functional domains responsible for regulating the secretion of translocases: an N-terminal secretion signal and a C-terminal regulatory domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061689-0
2013-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/446.html?itemId=/content/journal/micro/10.1099/mic.0.061689-0&mimeType=html&fmt=ahah

References

  1. Archuleta T. L., Du Y., English C. A., Lory S., Lesser C., Ohi M. D., Ohi R., Spiller B. W..( 2011;). The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem286:33992–33998 [CrossRef][PubMed]
    [Google Scholar]
  2. Botteaux A., Sory M. P., Biskri L., Parsot C., Allaoui A..( 2009;). MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol71:449–460 [CrossRef][PubMed]
    [Google Scholar]
  3. Chan R. K., Botstein D., Watanabe T., Ogata Y..( 1972;). Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology50:883–898 [CrossRef][PubMed]
    [Google Scholar]
  4. Chatfield S. N., Charles I. G., Makoff A. J., Oxer M. D., Dougan G., Pickard D., Slater D., Fairweather N. F..( 1992;). Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology (N Y)10:888–892 [CrossRef][PubMed]
    [Google Scholar]
  5. Cheng L. W., Kay O., Schneewind O..( 2001;). Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol183:5293–5301 [CrossRef][PubMed]
    [Google Scholar]
  6. Crump J. A., Mintz E. D..( 2010;). Global trends in typhoid and paratyphoid fever. Clin Infect Dis50:241–246 [CrossRef][PubMed]
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  8. Deane J. E., Roversi P., King C., Johnson S., Lea S. M..( 2008;). Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol377:985–992 [CrossRef][PubMed]
    [Google Scholar]
  9. Deane J. E., Abrusci P., Johnson S., Lea S. M..( 2010;). Timing is everything: the regulation of type III secretion. Cell Mol Life Sci67:1065–1075 [CrossRef][PubMed]
    [Google Scholar]
  10. Delahay R. M., Frankel G..( 2002;). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol45:905–916 [CrossRef][PubMed]
    [Google Scholar]
  11. Deng W., Li Y., Hardwidge P. R., Frey E. A., Pfuetzner R. A., Lee S., Gruenheid S., Strynakda N. C., Puente J. L., Finlay B. B..( 2005;). Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun73:2135–2146 [CrossRef][PubMed]
    [Google Scholar]
  12. Ehrbar K., Winnen B., Hardt W. D..( 2006;). The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol59:248–264 [CrossRef][PubMed]
    [Google Scholar]
  13. Fields K. A., Hackstadt T..( 2000;). Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol38:1048–1060 [CrossRef][PubMed]
    [Google Scholar]
  14. Galán J. E., Wolf-Watz H..( 2006;). Protein delivery into eukaryotic cells by type III secretion machines. Nature444:567–573 [CrossRef][PubMed]
    [Google Scholar]
  15. Giacomodonato M. N., Uzzau S., Bacciu D., Caccuri R., Sarnacki S. H., Rubino S., Cerquetti M. C..( 2007;). SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology153:1221–1228 [CrossRef][PubMed]
    [Google Scholar]
  16. Ginocchio C., Pace J., Galán J. E..( 1992;). Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc Natl Acad Sci U S A89:5976–5980 [CrossRef][PubMed]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J..( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  18. Hueck C. J..( 1998;). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433[PubMed]
    [Google Scholar]
  19. Jang J. I., Kim J. S., Eom J. S., Kim H. G., Kim B. H., Lim S., Bang I. S., Park Y. K..( 2012;). Expression and delivery of tetanus toxin fragment C fused to the N-terminal domain of SipB enhances specific immune responses in mice. Microbiol Immunol56:595–604 [CrossRef][PubMed]
    [Google Scholar]
  20. Kaniga K., Trollinger D., Galán J. E..( 1995;). Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J Bacteriol177:7078–7085[PubMed]
    [Google Scholar]
  21. Kim B. H., Kim H. G., Kim J. S., Jang J. I., Park Y. K..( 2007;). Analysis of functional domains present in the N-terminus of the SipB protein. Microbiology153:2998–3008 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim H. G., Kim B. H., Kim J. S., Eom J. S., Bang I. S., Bang S. H., Lee I. S., Park Y. K..( 2008;). N-terminal residues of SipB are required for its surface localization on Salmonella enterica serovar Typhimurium. Microbiology154:207–216 [CrossRef][PubMed]
    [Google Scholar]
  23. Kubori T., Galán J. E..( 2002;). Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol184:4699–4708 [CrossRef][PubMed]
    [Google Scholar]
  24. Lara-Tejero M., Galán J. E..( 2009;). Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun77:2635–2642 [CrossRef][PubMed]
    [Google Scholar]
  25. Lara-Tejero M., Kato J., Wagner S., Liu X., Galán J. E..( 2011;). A sorting platform determines the order of protein secretion in bacterial type III systems. Science331:1188–1191 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee S. H., Galán J. E..( 2004;). Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol51:483–495 [CrossRef][PubMed]
    [Google Scholar]
  27. Ly K. T., Casanova J. E..( 2007;). Mechanisms of Salmonella entry into host cells. Cell Microbiol9:2103–2111 [CrossRef][PubMed]
    [Google Scholar]
  28. Martinez-Argudo I., Blocker A. J..( 2010;). The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol78:1365–1378 [CrossRef][PubMed]
    [Google Scholar]
  29. Matteï P. J., Faudry E., Job V., Izoré T., Attree I., Dessen A..( 2011;). Membrane targeting and pore formation by the type III secretion system translocon. FEBS J278:414–426 [CrossRef][PubMed]
    [Google Scholar]
  30. Moreno M., Audia J. P., Bearson S. M., Webb C., Foster J. W..( 2000;). Regulation of sigma S degradation in Salmonella enterica var typhimurium: in vivo interactions between sigma S, the response regulator MviA(RssB) and ClpX. J Mol Microbiol Biotechnol2:245–254[PubMed]
    [Google Scholar]
  31. Ochman H., Groisman E. A..( 1996;). Distribution of pathogenicity islands in Salmonella spp. Infect Immun64:5410–5412[PubMed]
    [Google Scholar]
  32. Osborne S. E., Coombes B. K..( 2011;). Expression and secretion hierarchy in the nonflagellar type III secretion system. Future Microbiol6:193–202 [CrossRef][PubMed]
    [Google Scholar]
  33. Pallen M. J., Beatson S. A., Bailey C. M..( 2005;). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol5:9 [CrossRef][PubMed]
    [Google Scholar]
  34. Samudrala R., Heffron F., McDermott J. E..( 2009;). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog5:e1000375 [CrossRef][PubMed]
    [Google Scholar]
  35. Schubot F. D., Jackson M. W., Penrose K. J., Cherry S., Tropea J. E., Plano G. V., Waugh D. S..( 2005;). Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol346:1147–1161 [CrossRef][PubMed]
    [Google Scholar]
  36. Tree J. J., Wolfson E. B., Wang D., Roe A. J., Gally D. L..( 2009;). Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol17:361–370 [CrossRef][PubMed]
    [Google Scholar]
  37. Uzzau S., Figueroa-Bossi N., Rubino S., Bossi L..( 2001;). Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A98:15264–15269 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang D., Roe A. J., McAteer S., Shipston M. J., Gally D. L..( 2008;). Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol69:1499–1512 [CrossRef][PubMed]
    [Google Scholar]
  39. Wray C., Sojka W. J..( 1978;). Experimental Salmonella typhimurium infection in calves. Res Vet Sci25:139–143[PubMed]
    [Google Scholar]
  40. Younis R., Bingle L. E., Rollauer S., Munera D., Busby S. J., Johnson S., Deane J. E., Lea S. M., Frankel G., Pallen M. J..( 2010;). SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. J Bacteriol192:6093–6098 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061689-0
Loading
/content/journal/micro/10.1099/mic.0.061689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error