Aerobic glycerol dissimilation via the DhaK pathway depends on NADH oxidase and a phosphotransfer reaction from PEP to DhaK via EIIA Free

Abstract

Two pathways for glycerol dissimilation are present in . Either glycerol is first phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase with molecular oxygen as the electron acceptor (GlpO/GlpK pathway), or it is first oxidized by glycerol dehydrogenase with NAD as the acceptor of the reduction equivalents and then phosphorylated by dihydroxyacetone kinase (GldA/DhaK pathway). The final end product in both cases is dihydroxyacetone phosphate (DHAP). The genes of the GldA/DhaK pathway are present in a four-gene operon structure encoding GldA, a small hypothetical protein (EF1359), and two subunits of dihydroxyacetone kinase (DhaK and DhaL). We demonstrate in this study that protein EF1359 is part of a phosphorylation cascade which phosphorylates dihydroxyacetone in a phosphoenolpyruvate (PEP)-dependent reaction via EI, HPr, EF1359 and DhaLK. Furthermore we show that aerobic dissimilation of glycerol via the GldA/DhaK pathway is dependent on active NADH oxidase to regenerate NADH in A refined model of the aerobic metabolism of glycerol via the GldA/DhaK pathway is presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061663-0
2012-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2661.html?itemId=/content/journal/micro/10.1099/mic.0.061663-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M., Butaye P., Witte W. ( 2002). Nonhuman reservoirs of enterococci. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M. ( 2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891 [View Article][PubMed]
    [Google Scholar]
  3. Benachour A., Auffray Y., Hartke A. ( 2007). Construction of plasmid vectors for screening replicons from Gram-positive bacteria and their use as shuttle cloning vectors. Curr Microbiol 54:342–347 [View Article][PubMed]
    [Google Scholar]
  4. Bizzini A., Zhao C., Budin-Verneuil A., Sauvageot N., Giard J. C., Auffray Y., Hartke A. ( 2010). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis . J Bacteriol 192:779–785 [View Article][PubMed]
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W. ( 2006). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031 [View Article][PubMed]
    [Google Scholar]
  6. Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U. ( 2006). Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci 63:890–900 [View Article][PubMed]
    [Google Scholar]
  7. Galinier A., Haiech J., Kilhoffer M. C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. ( 1997). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 94:8439–8444 [View Article][PubMed]
    [Google Scholar]
  8. Gilmore M. S., Coburn P. S., Nallapareddy S. R., Murray B. E. ( 2002). Enterococcal virulence. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gutknecht R., Beutler R., Garcia-Alles L. F., Baumann U., Erni B. ( 2001). The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 20:2480–2486 [View Article][PubMed]
    [Google Scholar]
  10. Huycke M. M. ( 2002). Physiology of enterococci. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Jacobs N. J., Vandemark P. J. ( 1960). Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis . J Bacteriol 79:532–538[PubMed]
    [Google Scholar]
  12. La Carbona S., Sauvageot N., Giard J. C., Benachour A., Posteraro B., Auffray Y., Sanguinetti M., Hartke A. ( 2007). Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis . Mol Microbiol 66:1148–1163 [View Article][PubMed]
    [Google Scholar]
  13. Lin E. C. C. ( 1976). Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578 [View Article][PubMed]
    [Google Scholar]
  14. Mundy L. M., Sahm D. F., Gilmore M. ( 2000). Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522 [View Article][PubMed]
    [Google Scholar]
  15. Sambrook J., Fritsch E., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Tannock G. W., Cook G. ( 2002). Enterococci as members of the intestinal microflora of humans. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Terzaghi B. E., Sandine W. E. ( 1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813[PubMed]
    [Google Scholar]
  18. Yagi Y., Clewell D. B. ( 1980). Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol 143:966–970[PubMed]
    [Google Scholar]
  19. Zurbriggen A., Jeckelmann J. M., Christen S., Bieniossek C., Baumann U., Erni B. ( 2008). X-ray structures of the three Lactococcus lactis dihydroxyacetone kinase subunits and of a transient intersubunit complex. J Biol Chem 283:35789–35796 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061663-0
Loading
/content/journal/micro/10.1099/mic.0.061663-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed