1887

Abstract

Two pathways for glycerol dissimilation are present in . Either glycerol is first phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase with molecular oxygen as the electron acceptor (GlpO/GlpK pathway), or it is first oxidized by glycerol dehydrogenase with NAD as the acceptor of the reduction equivalents and then phosphorylated by dihydroxyacetone kinase (GldA/DhaK pathway). The final end product in both cases is dihydroxyacetone phosphate (DHAP). The genes of the GldA/DhaK pathway are present in a four-gene operon structure encoding GldA, a small hypothetical protein (EF1359), and two subunits of dihydroxyacetone kinase (DhaK and DhaL). We demonstrate in this study that protein EF1359 is part of a phosphorylation cascade which phosphorylates dihydroxyacetone in a phosphoenolpyruvate (PEP)-dependent reaction via EI, HPr, EF1359 and DhaLK. Furthermore we show that aerobic dissimilation of glycerol via the GldA/DhaK pathway is dependent on active NADH oxidase to regenerate NADH in A refined model of the aerobic metabolism of glycerol via the GldA/DhaK pathway is presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061663-0
2012-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2661.html?itemId=/content/journal/micro/10.1099/mic.0.061663-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M., Butaye P., Witte W.. ( 2002;). Nonhuman reservoirs of enterococci. . In The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control, pp. 301–354. Edited by Gilmore M. S. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. . Appl Environ Microbiol 70:, 6887–6891. [CrossRef][PubMed]
    [Google Scholar]
  3. Benachour A., Auffray Y., Hartke A.. ( 2007;). Construction of plasmid vectors for screening replicons from Gram-positive bacteria and their use as shuttle cloning vectors. . Curr Microbiol 54:, 342–347. [CrossRef][PubMed]
    [Google Scholar]
  4. Bizzini A., Zhao C., Budin-Verneuil A., Sauvageot N., Giard J. C., Auffray Y., Hartke A.. ( 2010;). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. . J Bacteriol 192:, 779–785. [CrossRef][PubMed]
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. . Microbiol Mol Biol Rev 70:, 939–1031. [CrossRef][PubMed]
    [Google Scholar]
  6. Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U.. ( 2006;). Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. . Cell Mol Life Sci 63:, 890–900. [CrossRef][PubMed]
    [Google Scholar]
  7. Galinier A., Haiech J., Kilhoffer M. C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I.. ( 1997;). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. . Proc Natl Acad Sci U S A 94:, 8439–8444. [CrossRef][PubMed]
    [Google Scholar]
  8. Gilmore M. S., Coburn P. S., Nallapareddy S. R., Murray B. E.. ( 2002;). Enterococcal virulence. . In The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control, pp. 301–354. Edited by Gilmore M. S. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Gutknecht R., Beutler R., Garcia-Alles L. F., Baumann U., Erni B.. ( 2001;). The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. . EMBO J 20:, 2480–2486. [CrossRef][PubMed]
    [Google Scholar]
  10. Huycke M. M.. ( 2002;). Physiology of enterococci. . In The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control, pp. 301–354. Edited by Gilmore M. S. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Jacobs N. J., Vandemark P. J.. ( 1960;). Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. . J Bacteriol 79:, 532–538.[PubMed]
    [Google Scholar]
  12. La Carbona S., Sauvageot N., Giard J. C., Benachour A., Posteraro B., Auffray Y., Sanguinetti M., Hartke A.. ( 2007;). Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. . Mol Microbiol 66:, 1148–1163. [CrossRef][PubMed]
    [Google Scholar]
  13. Lin E. C. C.. ( 1976;). Glycerol dissimilation and its regulation in bacteria. . Annu Rev Microbiol 30:, 535–578. [CrossRef][PubMed]
    [Google Scholar]
  14. Mundy L. M., Sahm D. F., Gilmore M.. ( 2000;). Relationships between enterococcal virulence and antimicrobial resistance. . Clin Microbiol Rev 13:, 513–522. [CrossRef][PubMed]
    [Google Scholar]
  15. Sambrook J., Fritsch E., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  16. Tannock G. W., Cook G.. ( 2002;). Enterococci as members of the intestinal microflora of humans. . In The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control, pp. 301–354. Edited by Gilmore M. S. et al.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. . Appl Microbiol 29:, 807–813.[PubMed]
    [Google Scholar]
  18. Yagi Y., Clewell D. B.. ( 1980;). Recombination-deficient mutant of Streptococcus faecalis. . J Bacteriol 143:, 966–970.[PubMed]
    [Google Scholar]
  19. Zurbriggen A., Jeckelmann J. M., Christen S., Bieniossek C., Baumann U., Erni B.. ( 2008;). X-ray structures of the three Lactococcus lactis dihydroxyacetone kinase subunits and of a transient intersubunit complex. . J Biol Chem 283:, 35789–35796. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061663-0
Loading
/content/journal/micro/10.1099/mic.0.061663-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error