1887

Abstract

Two pathways for glycerol dissimilation are present in . Either glycerol is first phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase with molecular oxygen as the electron acceptor (GlpO/GlpK pathway), or it is first oxidized by glycerol dehydrogenase with NAD as the acceptor of the reduction equivalents and then phosphorylated by dihydroxyacetone kinase (GldA/DhaK pathway). The final end product in both cases is dihydroxyacetone phosphate (DHAP). The genes of the GldA/DhaK pathway are present in a four-gene operon structure encoding GldA, a small hypothetical protein (EF1359), and two subunits of dihydroxyacetone kinase (DhaK and DhaL). We demonstrate in this study that protein EF1359 is part of a phosphorylation cascade which phosphorylates dihydroxyacetone in a phosphoenolpyruvate (PEP)-dependent reaction via EI, HPr, EF1359 and DhaLK. Furthermore we show that aerobic dissimilation of glycerol via the GldA/DhaK pathway is dependent on active NADH oxidase to regenerate NADH in A refined model of the aerobic metabolism of glycerol via the GldA/DhaK pathway is presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061663-0
2012-10-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2661.html?itemId=/content/journal/micro/10.1099/mic.0.061663-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M., Butaye P., Witte W.. ( 2002;). Nonhuman reservoirs of enterococci. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol70:6887–6891 [CrossRef][PubMed]
    [Google Scholar]
  3. Benachour A., Auffray Y., Hartke A.. ( 2007;). Construction of plasmid vectors for screening replicons from Gram-positive bacteria and their use as shuttle cloning vectors. Curr Microbiol54:342–347 [CrossRef][PubMed]
    [Google Scholar]
  4. Bizzini A., Zhao C., Budin-Verneuil A., Sauvageot N., Giard J. C., Auffray Y., Hartke A.. ( 2010;). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol192:779–785 [CrossRef][PubMed]
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  6. Erni B., Siebold C., Christen S., Srinivas A., Oberholzer A., Baumann U.. ( 2006;). Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci63:890–900 [CrossRef][PubMed]
    [Google Scholar]
  7. Galinier A., Haiech J., Kilhoffer M. C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I.. ( 1997;). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A94:8439–8444 [CrossRef][PubMed]
    [Google Scholar]
  8. Gilmore M. S., Coburn P. S., Nallapareddy S. R., Murray B. E.. ( 2002;). Enterococcal virulence. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Gutknecht R., Beutler R., Garcia-Alles L. F., Baumann U., Erni B.. ( 2001;). The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J20:2480–2486 [CrossRef][PubMed]
    [Google Scholar]
  10. Huycke M. M.. ( 2002;). Physiology of enterococci. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Jacobs N. J., Vandemark P. J.. ( 1960;). Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J Bacteriol79:532–538[PubMed]
    [Google Scholar]
  12. La Carbona S., Sauvageot N., Giard J. C., Benachour A., Posteraro B., Auffray Y., Sanguinetti M., Hartke A.. ( 2007;). Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol Microbiol66:1148–1163 [CrossRef][PubMed]
    [Google Scholar]
  13. Lin E. C. C.. ( 1976;). Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol30:535–578 [CrossRef][PubMed]
    [Google Scholar]
  14. Mundy L. M., Sahm D. F., Gilmore M.. ( 2000;). Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev13:513–522 [CrossRef][PubMed]
    [Google Scholar]
  15. Sambrook J., Fritsch E., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Tannock G. W., Cook G.. ( 2002;). Enterococci as members of the intestinal microflora of humans. The Enterococci: Pathogenesis, Molecular Biology, Antibiotic Reistance and Infection Control301–354 Gilmore M. S. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  18. Yagi Y., Clewell D. B.. ( 1980;). Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol143:966–970[PubMed]
    [Google Scholar]
  19. Zurbriggen A., Jeckelmann J. M., Christen S., Bieniossek C., Baumann U., Erni B.. ( 2008;). X-ray structures of the three Lactococcus lactis dihydroxyacetone kinase subunits and of a transient intersubunit complex. J Biol Chem283:35789–35796 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061663-0
Loading
/content/journal/micro/10.1099/mic.0.061663-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error