1887

Abstract

Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The / genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a /-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium . This -like allele () is 58 % identical to pv. chromosomal and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the locus restored /-dependent phenotypes of / mutants. The functionality of RsmA was confirmed by the gain of control over target ′–′ and ′–′ translational fusions in the same mutant background. The RsmA activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from / mutants expressing RsmX/Y/Z RNAs indicated that RsmA is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA. Deletion of the C-terminal extra α-helix of RsmA affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional / homologue in a mobile genetic element.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061614-0
2013-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/230.html?itemId=/content/journal/micro/10.1099/mic.0.061614-0&mimeType=html&fmt=ahah

References

  1. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. ( 2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041 [View Article][PubMed]
    [Google Scholar]
  2. Barnard F. M., Loughlin M. F., Fainberg H. P., Messenger M. P., Ussery D. W., Williams P., Jenks P. J. ( 2004). Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori . Mol Microbiol 51:15–32 [View Article][PubMed]
    [Google Scholar]
  3. Blumer C., Heeb S., Pessi G., Haas D. ( 1999). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96:14073–14078 [View Article][PubMed]
    [Google Scholar]
  4. Chatterjee A., Cui Y., Liu Y., Dumenyo C. K., Chatterjee A. K. ( 1995). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61:1959–1967[PubMed]
    [Google Scholar]
  5. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J. ( 1998). JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893 [View Article][PubMed]
    [Google Scholar]
  6. Del Sal G., Manfioletti G., Schneider C. ( 1988). A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878[PubMed] [CrossRef]
    [Google Scholar]
  7. Dubey A. K., Baker C. S., Romeo T., Babitzke P. ( 2005). RNA sequence and secondary structure participate in high-affinity CsrA–RNA interaction. RNA 11:1579–1587 [View Article][PubMed]
    [Google Scholar]
  8. Fields J. A., Thompson S. A. ( 2012). Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol 12:233 [View Article][PubMed]
    [Google Scholar]
  9. Gewitz H.-S., Pistorius E. K., Voss H., Vennesland B. ( 1976). Cyanide formation in preparations from Chlorella vulgaris Beijerinck: effect of sonication and amygdalin addition. Planta 131:145–148 [CrossRef]
    [Google Scholar]
  10. Harley C. B., Reynolds R. P. ( 1987). Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [View Article][PubMed]
    [Google Scholar]
  11. Heeb S., Kuehne S. A., Bycroft M., Crivii S., Allen M. D., Haas D., Cámara M., Williams P. ( 2006). Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 355:1026–1036 [View Article][PubMed]
    [Google Scholar]
  12. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Cámara M., Williams P., Haas D. ( 2004). Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945 [View Article][PubMed]
    [Google Scholar]
  13. Kaberdin V. R., Bläsi U. ( 2006). Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30:967–979[PubMed] [CrossRef]
    [Google Scholar]
  14. Katzen F., Becker A., Zorreguieta A., Pühler A., Ielpi L. ( 1996). Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 178:4313–4318[PubMed]
    [Google Scholar]
  15. Kay E., Dubuis C., Haas D. ( 2005). Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102:17136–17141 [View Article][PubMed]
    [Google Scholar]
  16. Kostelidou K., Thomas C. M. ( 2002). DNA recognition by the KorA proteins of IncP-1 plasmids RK2 and R751. Biochim Biophys Acta 1576:110–118 [View Article][PubMed]
    [Google Scholar]
  17. Labesse G., Mornon J. ( 1998). Incremental threading optimization (TITO) to help alignment and modelling of remote homologues. Bioinformatics 14:206–211 [View Article][PubMed]
    [Google Scholar]
  18. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  19. Lapouge K., Sineva E., Lindell M., Starke K., Baker C. S., Babitzke P., Haas D. ( 2007). Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens . Mol Microbiol 66:341–356 [View Article][PubMed]
    [Google Scholar]
  20. Lapouge K., Schubert M., Allain F. H., Haas D. ( 2008). Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253 [View Article][PubMed]
    [Google Scholar]
  21. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007). clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  22. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D. ( 1992). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A 89:1562–1566 [View Article][PubMed]
    [Google Scholar]
  23. Liu M. Y., Gui G., Wei B., Preston J. F. III, Oakford L., Yüksel U., Giedroc D. P., Romeo T. ( 1997). The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli . J Biol Chem 272:17502–17510 [View Article][PubMed]
    [Google Scholar]
  24. Lovell S. C., Davis I. W., Arendall W. B. III, de Bakker P. I., Word J. M., Prisant M. G., Richardson J. S., Richardson D. C. ( 2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450 [View Article][PubMed]
    [Google Scholar]
  25. MacLellan S. R., MacLean A. M., Finan T. M. ( 2006). Promoter prediction in the rhizobia. Microbiology 152:1751–1763 [View Article][PubMed]
    [Google Scholar]
  26. Maurhofer M., Reimmann C., Schmidli-Sacherer P., Heeb S., Haas D., Défago G. ( 1998). Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684[PubMed] [CrossRef]
    [Google Scholar]
  27. Meade H. M., Signer E. R. ( 1977). Genetic mapping of Rhizobium meliloti . Proc Natl Acad Sci U S A 74:2076–2078 [View Article][PubMed]
    [Google Scholar]
  28. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mukherjee S., Yakhnin H., Kysela D., Sokoloski J., Babitzke P., Kearns D. B. ( 2011). CsrA–FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis . Mol Microbiol 82:447–461 [View Article][PubMed]
    [Google Scholar]
  30. Olivas A. D., Shogan B. D., Valuckaite V., Zaborin A., Belogortseva N., Musch M., Meyer F., Trimble W. L., An G. & other authors ( 2012). Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak. PLoS ONE 7:e44326 [View Article][PubMed]
    [Google Scholar]
  31. Ongena M., Daayf F., Jacques P., Thonart P., Benhamou N., Paulitz T. C., Cornelis P., Koedam N., Belanger R. R. ( 1999). Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76 [View Article]
    [Google Scholar]
  32. Ramette A., Frapolli M., Fischer-Le Saux M., Gruffaz C., Meyer J.-M., Défago G., Sutra L., Moënne-Loccoz Y. ( 2011). Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188 [View Article][PubMed]
    [Google Scholar]
  33. Reimmann C., Valverde C., Kay E., Haas D. ( 2005). Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187:276–285[PubMed] [CrossRef]
    [Google Scholar]
  34. Rife C., Schwarzenbacher R., McMullan D., Abdubek P., Ambing E., Axelrod H., Biorac T., Canaves J. M., Chiu H. J. & other authors ( 2005). Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 Å resolution reveals a new fold. Proteins 61:449–453 [View Article][PubMed]
    [Google Scholar]
  35. Romeo T., Gong M. ( 1993). Genetic and physical mapping of the regulatory gene csrA on the Escherichia coli K-12 chromosome. J Bacteriol 175:5740–5741[PubMed]
    [Google Scholar]
  36. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A. M. ( 1993). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755[PubMed]
    [Google Scholar]
  37. Romeo T., Vakulskas C. A., Babitzke P. ( 2012). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 194:79–89[PubMed]
    [Google Scholar]
  38. Sacherer P., Défago G. A., Haas D. ( 1994). Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160[PubMed] [CrossRef]
    [Google Scholar]
  39. Šali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. ( 1995). Evaluation of comparative protein modeling by modeller . Proteins 23:318–326 [View Article][PubMed]
    [Google Scholar]
  40. Sambrook J., Fritsch E., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schubert M., Lapouge K., Duss O., Oberstrass F. C., Jelesarov I., Haas D., Allain F. H. ( 2007). Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14:807–813 [View Article][PubMed]
    [Google Scholar]
  42. Sobrero P., Valverde C. ( 2011). Evidences of autoregulation of hfq expression in Sinorhizobium meliloti strain 2011. Arch Microbiol 193:629–639 [View Article][PubMed]
    [Google Scholar]
  43. Stutz E. W., Defago G., Kern H. ( 1986). Natural occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185 [CrossRef]
    [Google Scholar]
  44. Sze C. W., Morado D. R., Liu J., Charon N. W., Xu H., Li C. ( 2011). Carbon storage regulator A (CsrABb) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol Microbiol 82:851–864[PubMed] [CrossRef]
    [Google Scholar]
  45. Timmermans J., Van Melderen L. ( 2010). Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 67:2897–2908 [View Article][PubMed]
    [Google Scholar]
  46. Valverde C. ( 2009). Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens . Arch Microbiol 191:349–359 [View Article][PubMed]
    [Google Scholar]
  47. Valverde C., Haas D. ( 2008). Small RNAs controlled by two-component systems. Adv Exp Med Biol 631:54–79 [View Article][PubMed]
    [Google Scholar]
  48. Valverde C., Heeb S., Keel C., Haas D. ( 2003). RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379 [View Article][PubMed]
    [Google Scholar]
  49. Valverde C., Lindell M., Wagner E. G., Haas D. ( 2004). A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens . J Biol Chem 279:25066–25074[PubMed] [CrossRef]
    [Google Scholar]
  50. Watson R. J., Heys R. ( 2006). Replication regions of Sinorhizobium meliloti plasmids. Plasmid 55:87–98 [View Article][PubMed]
    [Google Scholar]
  51. Wiederstein M., Sippl M. J. ( 2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:Web Server issueW407–W410[PubMed] [CrossRef]
    [Google Scholar]
  52. Yakhnin H., Pandit P., Petty T. J., Baker C. S., Romeo T., Babitzke P. ( 2007). CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 64:1605–1620 [View Article][PubMed]
    [Google Scholar]
  53. Yakhnin H., Yakhnin A. V., Baker C. S., Sineva E., Berezin I., Romeo T., Babitzke P. ( 2011). Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol Microbiol 81:689–704 [View Article][PubMed]
    [Google Scholar]
  54. Zuber S., Carruthers F., Keel C., Mattart A., Blumer C., Pessi G., Gigot-Bonnefoy C., Schnider-Keel U., Heeb S. & other authors ( 2003). GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:634–644 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061614-0
Loading
/content/journal/micro/10.1099/mic.0.061614-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error