1887

Abstract

The streptolydigin biosynthetic gene cluster from NRRL 2433 contains three putative regulatory genes, , and , encoding proteins belonging to TetR and LuxR transcriptional regulator families and ATP/GTP-binding proteins of DNA and RNA helicase superfamily I, respectively. Inactivation of or resulted in the abolition of streptolydigin production, suggesting that these proteins are pathway-specific positive regulators. In the case of the mutant, low amounts of streptolydigin C were produced instead of streptolydigin. RT-PCR transcription analysis of streptolydigin biosynthesis genes revealed a hierarchical regulation process. SlgY was found to control the expression of the regulator . SlgR2 regulates the expression of structural genes involved in the formation of the streptolydigin bicyclic ketal moiety, incorporation and processing of 3-methylaspartate, and the regulator . On the other hand, SlgR1 controls the expression of , involved in the conversion of glutamate to 3-methylaspartate, and putative glycoside hydrolases and . Ectopic expression of , and regulatory genes in led to considerable increases in streptolydigin yields, 18-, 11- and 8.5-fold, respectively. Ectopic expression of in an mutant led to a 14-fold increase of streptolydigin C yields, while no effect was observed to result from expression of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061325-0
2012-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2504.html?itemId=/content/journal/micro/10.1099/mic.0.061325-0&mimeType=html&fmt=ahah

References

  1. Bérdy J.. ( 2005;). Bioactive microbial metabolites. . J Antibiot (Tokyo) 58:, 1–26. [CrossRef][PubMed]
    [Google Scholar]
  2. Bibb M. J.. ( 2005;). Regulation of secondary metabolism in streptomycetes. . Curr Opin Microbiol 8:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  3. Bihlmaier C., Welle E., Hofmann C., Welzel K., Vente A., Breitling E., Müller M., Glaser S., Bechthold A.. ( 2006;). Biosynthetic gene cluster for the polyenoyltetramic acid alpha-lipomycin. . Antimicrob Agents Chemother 50:, 2113–2121. [CrossRef][PubMed]
    [Google Scholar]
  4. Butler A. R., Bate N., Kiehl D. E., Kirst H. A., Cundliffe E.. ( 2002;). Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. . Nat Biotechnol 20:, 713–716. [CrossRef][PubMed]
    [Google Scholar]
  5. Carlson J. C., Fortman J. L., Anzai Y., Li S., Burr D. A., Sherman D. H.. ( 2010;). Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. . ChemBioChem 11:, 564–572. [CrossRef][PubMed]
    [Google Scholar]
  6. Chater K. F.. ( 1998;). Taking a genetic scalpel to the Streptomyces colony. . Microbiology 144:, 1465–1478. [CrossRef]
    [Google Scholar]
  7. Chater K. F., Chandra G.. ( 2008;). The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. . J Microbiol 46:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y., Smanski M. J., Shen B.. ( 2010;). Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. . Appl Microbiol Biotechnol 86:, 19–25. [CrossRef][PubMed]
    [Google Scholar]
  9. Cundliffe E.. ( 2008;). Control of tylosin biosynthesis in Streptomyces fradiae. . J Microbiol Biotechnol 18:, 1485–1491.[PubMed]
    [Google Scholar]
  10. DiCioccio R. A., Srivastava B. I.. ( 1976;). Selective inhibition of terminal deoxynucleotidyl transferase from leukemic cells by streptolydigin. . Biochem Biophys Res Commun 72:, 1343–1349. [CrossRef][PubMed]
    [Google Scholar]
  11. DiCioccio R. A., Srivastava B. I., Rinehart K. L. Jr, Lee V. J., Branfman A. R., Li L. H.. ( 1980;). Structure-activity relationship, selectivity and mode of inhibition of terminal deoxyribonucleotidyltransferase by streptolydigin analogs. . Biochem Pharmacol 29:, 2001–2008. [CrossRef][PubMed]
    [Google Scholar]
  12. Fernández E., Weissbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A.. ( 1998;). Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. . J Bacteriol 180:, 4929–4937.[PubMed]
    [Google Scholar]
  13. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F.. ( 1991;). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. . Cell 66:, 769–780. [CrossRef][PubMed]
    [Google Scholar]
  14. Gómez C., Horna D. H., Olano C., Palomino-Schätzlein M., Pineda-Lucena A., Carbajo R. J., Braña A. F., Méndez C., Salas J. A.. ( 2011;). Amino acid precursor supply in the biosynthesis of the RNA polymerase inhibitor streptolydigin by Streptomyces lydicus. . J Bacteriol 193:, 4214–4223. [CrossRef][PubMed]
    [Google Scholar]
  15. Gómez C., Olano C., Palomino-Schätzlein M., Pineda-Lucena A., Carbajo R. J., Braña A. F., Méndez C., Salas J. A.. ( 2012a;). Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. . J Antibiot 65:, 341–348. [CrossRef][PubMed]
    [Google Scholar]
  16. Gómez C., Horna D. H., Olano C., Méndez C., Salas J. A.. ( 2012b;). Participation of putative glycoside hydrolases SlgC1 and SlgC2 in the biosynthesis of streptolydigin in Streptomyces lydicus. . Microb Biotechnol (in press). [CrossRef][PubMed]
    [Google Scholar]
  17. He W., Lei J., Liu Y., Wang Y.. ( 2008;). The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. . Arch Microbiol 189:, 501–510. [CrossRef][PubMed]
    [Google Scholar]
  18. Hirano S., Tanaka K., Ohnishi Y., Horinouchi S.. ( 2008;). Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. . Microbiology 154:, 905–914. [CrossRef][PubMed]
    [Google Scholar]
  19. Horbal L., Rebets Y., Rabyk M., Luzhetskyy A., Ostash B., Welle E., Nakamura T., Fedorenko V., Bechthold A.. ( 2010;). Characterization and analysis of the regulatory network involved in control of lipomycin biosynthesis in Streptomyces aureofaciens Tü117. . Appl Microbiol Biotechnol 85:, 1069–1079. [CrossRef][PubMed]
    [Google Scholar]
  20. Horna D. H., Gómez C., Olano C., Palomino-Schätzlein M., Pineda-Lucena A., Carbajo R. J., Braña A. F., Méndez C., Salas J. A.. ( 2011;). Biosynthesis of the RNA polymerase inhibitor streptolydigin in Streptomyces lydicus: tailoring modification of 3-methyl-aspartate. . J Bacteriol 193:, 2647–2651. [CrossRef][PubMed]
    [Google Scholar]
  21. Huang J., Shi J., Molle V., Sohlberg B., Weaver D., Bibb M. J., Karoonuthaisiri N., Lih C. J., Kao C. M.. & other authors ( 2005;). Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. . Mol Microbiol 58:, 1276–1287. [CrossRef][PubMed]
    [Google Scholar]
  22. Jiang H., Hutchinson C. R.. ( 2006;). Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. . Res Microbiol 157:, 666–674. [CrossRef][PubMed]
    [Google Scholar]
  23. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics. Norwich:: The John Innes Foundation;.
    [Google Scholar]
  24. Liras P., Gómez-Escribano J. P., Santamarta I.. ( 2008;). Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. . J Ind Microbiol Biotechnol 35:, 667–676. [CrossRef][PubMed]
    [Google Scholar]
  25. Menéndez N., Nur-e-Alam M., Fischer C., Braña A. F., Salas J. A., Rohr J., Méndez C.. ( 2006;). Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. . Appl Environ Microbiol 72:, 167–177. [CrossRef][PubMed]
    [Google Scholar]
  26. Mo X., Wang Z., Wang B., Ma J., Huang H., Tian X., Zhang S., Zhang C., Ju J.. ( 2011;). Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. . Biochem Biophys Res Commun 406:, 341–347. [CrossRef][PubMed]
    [Google Scholar]
  27. Olano C., Wilkinson B., Sánchez C., Moss S. J., Sheridan R., Math V., Weston A. J., Braña A. F., Martin C. J., Oliynyk M.. ( 2004;). Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. . Chem Biol 11:, 87–97. [CrossRef][PubMed]
    [Google Scholar]
  28. Olano C., Lombó F., Méndez C., Salas J. A.. ( 2008;). Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. . Metab Eng 10:, 281–292. [CrossRef][PubMed]
    [Google Scholar]
  29. Olano C., Gómez C., Pérez M., Palomino M., Pineda-Lucena A., Carbajo R. J., Braña A. F., Méndez C., Salas J. A.. ( 2009;). Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. . Chem Biol 16:, 1031–1044. [CrossRef][PubMed]
    [Google Scholar]
  30. Otten S. L., Olano C., Hutchinson C. R.. ( 2000;). The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. . Microbiology 146:, 1457–1468.[PubMed]
    [Google Scholar]
  31. Ramos J. L., Martínez-Bueno M., Molina-Henares A. J., Terán W., Watanabe K., Zhang X., Gallegos M. T., Brennan R., Tobes R.. ( 2005;). The TetR family of transcriptional repressors. . Microbiol Mol Biol Rev 69:, 326–356. [CrossRef][PubMed]
    [Google Scholar]
  32. Rodríguez M., Núñez L. E., Braña A. F., Méndez C., Salas J. A., Blanco G.. ( 2008;). Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. . Mol Microbiol 69:, 633–645. [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  34. Sánchez-Hidalgo M., Núñez L. E., Méndez C., Salas J. A.. ( 2010;). Involvement of the beta subunit of RNA polymerase in resistance to streptolydigin and streptovaricin in the producer organisms Streptomyces lydicus and Streptomyces spectabilis. . Antimicrob Agents Chemother 54:, 1684–1692. [CrossRef][PubMed]
    [Google Scholar]
  35. Schobert R., Schlenk A.. ( 2008;). Tetramic and tetronic acids: an update on new derivatives and biological aspects. . Bioorg Med Chem 16:, 4203–4221. [CrossRef][PubMed]
    [Google Scholar]
  36. Siebenberg S., Bapat P. M., Lantz A. E., Gust B., Heide L.. ( 2010;). Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates. . J Biosci Bioeng 109:, 230–234. [CrossRef][PubMed]
    [Google Scholar]
  37. Temiakov D., Zenkin N., Vassylyeva M. N., Perederina A., Tahirov T. H., Kashkina E., Savkina M., Zorov S., Nikiforov V.. & other authors ( 2005;). Structural basis of transcription inhibition by antibiotic streptolydigin. . Mol Cell 19:, 655–666. [CrossRef][PubMed]
    [Google Scholar]
  38. Tuske S., Sarafianos S. G., Wang X., Hudson B., Sineva E., Mukhopadhyay J., Birktoft J. J., Leroy O., Ismail S.. & other authors ( 2005;). Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. . Cell 122:, 541–552. [CrossRef][PubMed]
    [Google Scholar]
  39. Tuteja N., Tuteja R.. ( 2004;). Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. . Eur J Biochem 271:, 1835–1848. [CrossRef][PubMed]
    [Google Scholar]
  40. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G. F., Chater K. F., van Sinderen D.. ( 2007;). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. . Microbiol Mol Biol Rev 71:, 495–548. [CrossRef][PubMed]
    [Google Scholar]
  41. Walker J. E., Saraste M., Runswick M. J., Gay N. J.. ( 1982;). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. . EMBO J 1:, 945–951.[PubMed]
    [Google Scholar]
  42. Wilson D. J., Xue Y., Reynolds K. A., Sherman D. H.. ( 2001;). Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. . J Bacteriol 183:, 3468–3475. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061325-0
Loading
/content/journal/micro/10.1099/mic.0.061325-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error