1887

Abstract

Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated. In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061192-0
2012-12-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3014.html?itemId=/content/journal/micro/10.1099/mic.0.061192-0&mimeType=html&fmt=ahah

References

  1. Allesen-Holm M., Barken K. B., Yang L., Klausen M., Webb J. S., Kjelleberg S., Molin S., Givskov M., Tolker-Nielsen T.. ( 2006;). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. . Mol Microbiol 59:, 1114–1128. [CrossRef][PubMed]
    [Google Scholar]
  2. Bertani G.. ( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. . J Bacteriol 62:, 293–300.[PubMed]
    [Google Scholar]
  3. Chiang W. C., Pamp S. J., Nilsson M., Givskov M., Tolker-Nielsen T.. ( 2012;). The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. . FEMS Immunol Med Microbiol 65:, 245–256. [CrossRef][PubMed]
    [Google Scholar]
  4. Clark D. J., Maaløe O.. ( 1967;). DNA replication and the division cycle in Escherichia coli. . J Mol Biol 23:, 99–112. [CrossRef]
    [Google Scholar]
  5. Collier D. N., Hager P. W., Phibbs P. V. Jr. ( 1996;). Catabolite repression control in the Pseudomonads. . Res Microbiol 147:, 551–561. [CrossRef][PubMed]
    [Google Scholar]
  6. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. ( 1995;). Microbial biofilms. . Annu Rev Microbiol 49:, 711–745. [CrossRef][PubMed]
    [Google Scholar]
  7. Harmsen M., Yang L., Pamp S. J., Tolker-Nielsen T.. ( 2010;). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. . FEMS Immunol Med Microbiol 59:, 253–268.[PubMed]
    [Google Scholar]
  8. Hester K. L., Lehman J., Najar F., Song L., Roe B. A., MacGregor C. H., Hager P. W., Phibbs P. V. Jr, Sokatch J. R.. ( 2000;). Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa. . J Bacteriol 182:, 1144–1149. [CrossRef][PubMed]
    [Google Scholar]
  9. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. ( 2000;). Quantification of biofilm structures by the novel computer program comstat. . Microbiology 146:, 2395–2407.[PubMed]
    [Google Scholar]
  10. Klausen M., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. ( 2003a;). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. . Mol Microbiol 50:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
  11. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T.. ( 2003b;). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. . Mol Microbiol 48:, 1511–1524. [CrossRef][PubMed]
    [Google Scholar]
  12. Linares J. F., Moreno R., Fajardo A., Martínez-Solano L., Escalante R., Rojo F., Martínez J. L.. ( 2010;). The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. . Environ Microbiol 12:, 3196–3212. [CrossRef][PubMed]
    [Google Scholar]
  13. MacGregor C. H., Wolff J. A., Arora S. K., Phibbs P. V. Jr. ( 1991;). Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. . J Bacteriol 173:, 7204–7212.[PubMed]
    [Google Scholar]
  14. Morales G., Linares J. F., Beloso A., Albar J. P., Martínez J. L., Rojo F.. ( 2004;). The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. . J Bacteriol 186:, 1337–1344. [CrossRef][PubMed]
    [Google Scholar]
  15. Moreno R., Ruiz-Manzano A., Yuste L., Rojo F.. ( 2007;). The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. . Mol Microbiol 64:, 665–675. [CrossRef][PubMed]
    [Google Scholar]
  16. Moreno R., Marzi S., Romby P., Rojo F.. ( 2009;). The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation. . Nucleic Acids Res 37:, 7678–7690. [CrossRef][PubMed]
    [Google Scholar]
  17. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J.. & other authors ( 2011;). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. . Science 334:, 982–986. [CrossRef][PubMed]
    [Google Scholar]
  18. O’Toole G. A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. . Mol Microbiol 30:, 295–304. [CrossRef][PubMed]
    [Google Scholar]
  19. O’Toole G. A., Gibbs K. A., Hager P. W., Phibbs P. V. Jr, Kolter R.. ( 2000;). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. . J Bacteriol 182:, 425–431. [CrossRef][PubMed]
    [Google Scholar]
  20. Pamp S. J., Tolker-Nielsen T.. ( 2007;). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. . J Bacteriol 189:, 2531–2539. [CrossRef][PubMed]
    [Google Scholar]
  21. Pamp S. J., Gjermansen M., Johansen H. K., Tolker-Nielsen T.. ( 2008;). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. . Mol Microbiol 68:, 223–240. [CrossRef][PubMed]
    [Google Scholar]
  22. Sarker S. D., Nahar L., Kumarasamy Y.. ( 2007;). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. . Methods 42:, 321–324. [CrossRef][PubMed]
    [Google Scholar]
  23. Sternberg C., Tolker-Nielsen T.. ( 2006;). Growing and analyzing biofilms in flow cells. . Curr Protoc Microbiol Chapter 1:, 1B–, 2.[PubMed]
    [Google Scholar]
  24. Sternberg C., Christensen B. B., Johansen T., Toftgaard Nielsen A., Andersen J. B., Givskov M., Molin S.. ( 1999;). Distribution of bacterial growth activity in flow-chamber biofilms. . Appl Environ Microbiol 65:, 4108–4117.[PubMed]
    [Google Scholar]
  25. Stewart P. S., Costerton J. W.. ( 2001;). Antibiotic resistance of bacteria in biofilms. . Lancet 358:, 135–138. [CrossRef][PubMed]
    [Google Scholar]
  26. Stewart P. S., Franklin M. J.. ( 2008;). Physiological heterogeneity in biofilms. . Nat Rev Microbiol 6:, 199–210. [CrossRef][PubMed]
    [Google Scholar]
  27. Xu K. D., Stewart P. S., Xia F., Huang C. T., McFeters G. A.. ( 1998;). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. . Appl Environ Microbiol 64:, 4035–4039.[PubMed]
    [Google Scholar]
  28. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T.. ( 2007;). Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. . Microbiology 153:, 1318–1328. [CrossRef][PubMed]
    [Google Scholar]
  29. Yang L., Nilsson M., Gjermansen M., Givskov M., Tolker-Nielsen T.. ( 2009;). Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. . Mol Microbiol 74:, 1380–1392. [CrossRef][PubMed]
    [Google Scholar]
  30. Yang L., Hu Y., Liu Y., Zhang J., Ulstrup J., Molin S.. ( 2011;). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. . Environ Microbiol 13:, 1705–1717. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061192-0
Loading
/content/journal/micro/10.1099/mic.0.061192-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error