1887

Abstract

The obligate pathogenic mycoplasma species uses a limited but effective repertoire of virulence factors to infect and colonize the human respiratory tract. Besides the development of a unique adhesion complex and the expression of tissue-damaging factors, surface-located glycolytic enzymes and their capacity to bind to components of the human extracellular matrix (ECM) support pathogen–host interactions. Here, we demonstrated that the glycolytic enzymes enolase (Mpn606) and pyruvate dehydrogenase subunit B (Mpn392; PDHB) of show concentration-dependent binding to human plasminogen. Monospecific polyclonal antisera against both recombinant proteins reduced the binding to plasminogen significantly. The surface location of PDHB but not of enolase was demonstrated using Triton X fractionation of total protein content, membrane fractionation, colony blotting, mild proteolysis of mycoplasma cells, and immunofluorescence tests. To characterize the binding site of plasminogen in surface-displaced PDHB, the mycoplasmal protein was separated into four recombinant proteins followed by investigation of the binding behaviour of peptides that overlap the protein part interacting with plasminogen. Spot analysis resulted in a novel region of 12 amino acids (FPAMFQIFTHAA, position 91 to 102 of PDHB), which is responsible exclusively for binding of human plasminogen and also interacts in a dose-dependent manner with this host protein. The data indicate that the plasminogen-binding enzymes enolase and especially the surface-associated PDHB may contribute to the pathogenesis of infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061184-0
2013-02-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/352.html?itemId=/content/journal/micro/10.1099/mic.0.061184-0&mimeType=html&fmt=ahah

References

  1. Agarwal S. , Kulshreshtha P. , Bambah Mukku D. , Bhatnagar R. . ( 2008; ). α-Enolase binds to human plasminogen on the surface of Bacillus anthracis . . Biochim Biophys Acta 1784:, 986–994. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balasubramanian S. , Kannan T. R. , Hart P. J. , Baseman J. B. . ( 2009; ). Amino acid changes in elongation factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium influence fibronectin binding. . Infect Immun 77:, 3533–3541. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barbosa M. S. , Báo S. N. , Andreotti P. F. , de Faria F. P. , Felipe M. S. , dos Santos Feitosa L. , Mendes-Giannini M. J. , de Almeida Soares C. M. . ( 2006; ). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. . Infect Immun 74:, 382–389. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bergmann S. , Hammerschmidt S. . ( 2007; ). Fibrinolysis and host response in bacterial infections. . Thromb Haemost 98:, 512–520.[PubMed]
    [Google Scholar]
  5. Bergmann S. , Rohde M. , Chhatwal G. S. , Hammerschmidt S. . ( 2001; ). α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. . Mol Microbiol 40:, 1273–1287. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bergmann S. , Wild D. , Diekmann O. , Frank R. , Bracht D. , Chhatwal G. S. , Hammerschmidt S. . ( 2003; ). Identification of a novel plasmin(ogen)-binding motif in surface displayed α-enolase of Streptococcus pneumoniae . . Mol Microbiol 49:, 411–423. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bergmann S. , Rohde M. , Hammerschmidt S. . ( 2004; ). Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. . Infect Immun 72:, 2416–2419. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burnett T. A. , Dinkla K. , Rohde M. , Chhatwal G. S. , Uphoff C. , Srivastava M. , Cordwell S. J. , Geary S. , Liao X. . & other authors ( 2006; ). P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. . Mol Microbiol 60:, 669–686. [CrossRef] [PubMed]
    [Google Scholar]
  9. Candela M. , Biagi E. , Centanni M. , Turroni S. , Vici M. , Musiani F. , Vitali B. , Bergmann S. , Hammerschmidt S. , Brigidi P. . ( 2009; ). Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. . Microbiology 155:, 3294–3303. [CrossRef] [PubMed]
    [Google Scholar]
  10. Carneiro C. R. , Postol E. , Nomizo R. , Reis L. F. , Brentani R. R. . ( 2004; ). Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus . . Microbes Infect 6:, 604–608. [CrossRef] [PubMed]
    [Google Scholar]
  11. Castaldo C. , Vastano V. , Siciliano R. A. , Candela M. , Vici M. , Muscariello L. , Marasco R. , Sacco M. . ( 2009; ). Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. . Microb Cell Fact 8:, 14. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen H. , Yu S. , Shen X. , Chen D. , Qiu X. , Song C. , Ding C. . ( 2011; ). The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. . Microb Pathog 51:, 285–290. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chumchua V. , Pornputtapong N. , Thammarongtham C. , Meksuriyen D. . ( 2008; ). Homology modeling of Mycoplasma pneumoniae enolase and its molecular interaction with human plasminogen. . Bioinformation 3:, 18–23. [CrossRef] [PubMed]
    [Google Scholar]
  14. Crowe J. D. , Sievwright I. K. , Auld G. C. , Moore N. R. , Gow N. A. , Booth N. A. . ( 2003; ). Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. . Mol Microbiol 47:, 1637–1651. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dallo S. F. , Kannan T. R. , Blaylock M. W. , Baseman J. B. . ( 2002; ). Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae . . Mol Microbiol 46:, 1041–1051. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dandekar T. , Huynen M. , Regula J. T. , Ueberle B. , Zimmermann C. U. , Andrade M. A. , Doerks T. , Sánchez-Pulido L. , Snel B. . & other authors ( 2000; ). Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. . Nucleic Acids Res 28:, 3278–3288. [CrossRef] [PubMed]
    [Google Scholar]
  17. Derbise A. , Song Y. P. , Parikh S. , Fischetti V. A. , Pancholi V. . ( 2004; ). Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. . Infect Immun 72:, 94–105. [CrossRef] [PubMed]
    [Google Scholar]
  18. Donofrio F. C. , Calil A. C. , Miranda E. T. , Almeida A. M. , Benard G. , Soares C. P. , Veloso S. N. , Soares C. M. , Mendes Giannini M. J. . ( 2009; ). Enolase from Paracoccidioides brasiliensis: isolation and identification as a fibronectin-binding protein. . J Med Microbiol 58:, 706–713. [CrossRef] [PubMed]
    [Google Scholar]
  19. Dumke R. , Hausner M. , Jacobs E. . ( 2011; ). Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix. . Microbiology 157:, 2328–2338. [CrossRef] [PubMed]
    [Google Scholar]
  20. Dutow P. , Schmidl S. R. , Ridderbusch M. , Stülke J. . ( 2010; ). Interactions between glycolytic enzymes of Mycoplasma pneumoniae . . J Mol Microbiol Biotechnol 19:, 134–139. [CrossRef] [PubMed]
    [Google Scholar]
  21. Egea L. , Aguilera L. , Giménez R. , Sorolla M. A. , Aguilar J. , Badía J. , Baldoma L. . ( 2007; ). Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. . Int J Biochem Cell Biol 39:, 1190–1203. [CrossRef] [PubMed]
    [Google Scholar]
  22. Feng Y. , Pan X. , Sun W. , Wang C. , Zhang H. , Li X. , Ma Y. , Shao Z. , Ge J. . & other authors ( 2009; ). Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. . J Infect Dis 200:, 1583–1592. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gozalbo D. , Gil-Navarro I. , Azorín I. , Renau-Piqueras J. , Martínez J. P. , Gil M. L. . ( 1998; ). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. . Infect Immun 66:, 2052–2059.[PubMed]
    [Google Scholar]
  24. Hames C. , Halbedel S. , Schilling O. , Stülke J. . ( 2005; ). Multiple-mutation reaction: a method for simultaneous introduction of multiple mutations into the glpK gene of Mycoplasma pneumoniae . . Appl Environ Microbiol 71:, 4097–4100. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hames C. , Halbedel S. , Hoppert M. , Frey J. , Stülke J. . ( 2009; ). Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae . . J Bacteriol 191:, 747–753. [CrossRef] [PubMed]
    [Google Scholar]
  26. Henderson B. , Martin A. . ( 2011; ). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. . Infect Immun 79:, 3476–3491. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hoelzle L. E. , Hoelzle K. , Helbling M. , Aupperle H. , Schoon H. A. , Ritzmann M. , Heinritzi K. , Felder K. M. , Wittenbrink M. M. . ( 2007; ). MSG1, a surface-localised protein of Mycoplasma suis is involved in the adhesion to erythrocytes. . Microbes Infect 9:, 466–474. [CrossRef] [PubMed]
    [Google Scholar]
  28. Inamine J. M. , Ho K. C. , Loechel S. , Hu P. C. . ( 1990; ). Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum . . J Bacteriol 172:, 504–506.[PubMed]
    [Google Scholar]
  29. Jenkins C. , Geary S. J. , Gladd M. , Djordjevic S. P. . ( 2007; ). The Mycoplasma gallisepticum OsmC-like protein MG1142 resides on the cell surface and binds heparin. . Microbiology 153:, 1455–1463. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jong A. Y. , Chen S. H. , Stins M. F. , Kim K. S. , Tuan T. L. , Huang S. H. . ( 2003; ). Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. . J Med Microbiol 52:, 615–622. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kannan T. R. , Baseman J. B. . ( 2006; ). ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. . Proc Natl Acad Sci U S A 103:, 6724–6729. [CrossRef] [PubMed]
    [Google Scholar]
  32. Krause D. C. , Balish M. F. . ( 2004; ). Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae . . Mol Microbiol 51:, 917–924. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kühner S. , van Noort V. , Betts M. J. , Leo-Macias A. , Batisse C. , Rode M. , Yamada T. , Maier T. , Bader S. . & other authors ( 2009; ). Proteome organization in a genome-reduced bacterium. . Science 326:, 1235–1240. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lama A. , Kucknoor A. , Mundodi V. , Alderete J. F. . ( 2009; ). Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis . . Infect Immun 77:, 2703–2711. [CrossRef] [PubMed]
    [Google Scholar]
  35. Madureira P. , Baptista M. , Vieira M. , Magalhães V. , Camelo A. , Oliveira L. , Ribeiro A. , Tavares D. , Trieu-Cuot P. . & other authors ( 2007; ). Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. . J Immunol 178:, 1379–1387.[PubMed] [CrossRef]
    [Google Scholar]
  36. May M. , Papazisi L. , Gorton T. S. , Geary S. J. . ( 2006; ). Identification of fibronectin-binding proteins in Mycoplasma gallisepticum strain R. . Infect Immun 74:, 1777–1785. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mundodi V. , Kucknoor A. S. , Alderete J. F. . ( 2008; ). Immunogenic and plasminogen-binding surface-associated α-enolase of Trichomonas vaginalis . . Infect Immun 76:, 523–531. [CrossRef] [PubMed]
    [Google Scholar]
  38. Narita M. . ( 2010; ). Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia. . J Infect Chemother 16:, 162–169. [CrossRef] [PubMed]
    [Google Scholar]
  39. Nogueira S. V. , Fonseca F. L. , Rodrigues M. L. , Mundodi V. , Abi-Chacra E. A. , Winters M. S. , Alderete J. F. , de Almeida Soares C. M. . ( 2010; ). Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. . Infect Immun 78:, 4040–4050. [CrossRef] [PubMed]
    [Google Scholar]
  40. Nogueira S. V. , Smith A. A. , Qin J. H. , Pal U. . ( 2012; ). A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. . Infect Immun 80:, 82–90. [CrossRef] [PubMed]
    [Google Scholar]
  41. Nuyttens H. , Cyncynatus C. , Renaudin H. , Pereyre S. , Bébéar C. . ( 2010; ). Identification, expression and serological evaluation of the recombinant ATP synthase beta subunit of Mycoplasma pneumoniae . . BMC Microbiol 10:, 216. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pancholi V. , Chhatwal G. S. . ( 2003; ). Housekeeping enzymes as virulence factors for pathogens. . Int J Med Microbiol 293:, 391–401. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pancholi V. , Fischetti V. A. . ( 1992; ). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. . J Exp Med 176:, 415–426. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pancholi V. , Fischetti V. A. . ( 1998; ). α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. . J Biol Chem 273:, 14503–14515. [CrossRef] [PubMed]
    [Google Scholar]
  45. Proft T. , Herrmann R. . ( 1994; ). Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. . Mol Microbiol 13:, 337–348. [CrossRef] [PubMed]
    [Google Scholar]
  46. Regula J. T. , Boguth G. , Görg A. , Hegermann J. , Mayer F. , Frank R. , Herrmann R. . ( 2001; ). Defining the mycoplasma ‘cytoskeleton’: the protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. . Microbiology 147:, 1045–1057.[PubMed]
    [Google Scholar]
  47. Schmidl S. R. , Gronau K. , Pietack N. , Hecker M. , Becher D. , Stülke J. . ( 2010; ). The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. . Mol Cell Proteomics 9:, 1228–1242. [CrossRef] [PubMed]
    [Google Scholar]
  48. Schmidl S. R. , Otto A. , Lluch-Senar M. , Piñol J. , Busse J. , Becher D. , Stülke J. . ( 2011; ). A trigger enzyme in Mycoplasma pneumoniae: impact of the glycerophosphodiesterase GlpQ on virulence and gene expression. . PLoS Pathog 7:, e1002263. [CrossRef] [PubMed]
    [Google Scholar]
  49. Schreiner S. A. , Sokoli A. , Felder K. M. , Wittenbrink M. M. , Schwarzenbach S. , Guhl B. , Hoelzle K. , Hoelzle L. E. . ( 2012; ). The surface-localised α-enolase of Mycoplasma suis is an adhesion protein. . Vet Microbiol 156:, 88–95. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schurwanz N. , Jacobs E. , Dumke R. . ( 2009; ). Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development. . Infect Immun 77:, 5007–5015. [CrossRef] [PubMed]
    [Google Scholar]
  51. Seymour L. M. , Deutscher A. T. , Jenkins C. , Kuit T. A. , Falconer L. , Minion F. C. , Crossett B. , Padula M. , Dixon N. E. . & other authors ( 2010; ). A processed multidomain Mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. . J Biol Chem 285:, 33971–33978. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sha J. , Erova T. E. , Alyea R. A. , Wang S. , Olano J. P. , Pancholi V. , Chopra A. K. . ( 2009; ). Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila . . J Bacteriol 191:, 3095–3107. [CrossRef] [PubMed]
    [Google Scholar]
  53. Stevens M. K. , Krause D. C. . ( 1991; ). Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeletonlike Triton shell. . J Bacteriol 173:, 1041–1050.[PubMed]
    [Google Scholar]
  54. Tunio S. A. , Oldfield N. J. , Berry A. , Ala’Aldeen D. A. , Wooldridge K. G. , Turner D. P. J. . ( 2010; ). The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. . Mol Microbiol 76:, 605–615. [CrossRef] [PubMed]
    [Google Scholar]
  55. Waites K. B. , Talkington D. F. . ( 2004; ). Mycoplasma pneumoniae and its role as a human pathogen. . Clin Microbiol Rev 17:, 697–728. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wise K. S. , Kim M. F. , Watson-McKown R. . ( 1995; ). Variant membrane proteins. . In Molecular and Diagnostic Procedures in Mycoplasmology, Molecular Characterization, vol. 1, pp. 227–241. Edited by Razin S. , Tully J. G. . . San Diego, CA:: Academic Press;. [CrossRef]
    [Google Scholar]
  57. Yavlovich A. , Katzenell A. , Tarshis M. , Higazi A. A. , Rottem S. . ( 2004; ). Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase. . Infect Immun 72:, 5004–5011. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yavlovich A. , Rechnitzer H. , Rottem S. . ( 2007; ). α-Enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen. . Infect Immun 75:, 5716–5719. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061184-0
Loading
/content/journal/micro/10.1099/mic.0.061184-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error