1887

Abstract

Several bacteria are able to degrade flavonoids either to use them as carbon sources or as a detoxification mechanism. Degradation pathways have been proposed for several bacteria, but the genes responsible are not known. We identified in the genome of the endophyte SmR1 an operon potentially associated with the degradation of aromatic compounds. We show that this operon is involved in naringenin degradation and that its expression is induced by naringenin and chrysin, two closely related flavonoids. Mutation of , the first gene of the operon, and its transcriptional activator, abolished the ability of to degrade naringenin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061135-0
2013-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/167.html?itemId=/content/journal/micro/10.1099/mic.0.061135-0&mimeType=html&fmt=ahah

References

  1. Andersen O. M. , Markham K. R. . ( 2006; ). Flavonoids: Chemistry, Biochemistry and Applications. Edited by Andersen O. M. , Markham K. R. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Arunachalam M. , Mohan N. , Sugadev R. , Chellappan P. , Mahadevan A. . ( 2003; ). Degradation of (+)-catechin by Acinetobacter calcoaceticus MTC 127. . Biochim Biophys Acta 1621:, 261–265. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balachandar D. , Sandhiya G. S. , Sugitha T. C. K. , Kumar K. . ( 2006; ). Flavonoids and growth hormones influence endophytic colonization and in plant nitrogen fixation by a diazotrophic Serratia sp. in rice. . World J Microbiol Biotechnol 22:, 707–712. [CrossRef]
    [Google Scholar]
  4. Baldani J. I. , Baldani V. L. D. , Seldin L. , Döbereiner J. . ( 1986; ). Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. . Int J Syst Bacteriol 36:, 86–93. [CrossRef]
    [Google Scholar]
  5. Barz W. . ( 1970; ). Isolation of rhizosphere bacterium capable of degrading flavonoids. . Phytochem 9:, 1745–1749. [CrossRef]
    [Google Scholar]
  6. Bowater L. , Fairhurst S. A. , Just V. J. , Bornemann S. . ( 2004; ). Bacillus subtilis YxaG is a novel Fe-containing quercetin 2,3-dioxygenase. . FEBS Lett 557:, 45–48. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  8. Braune A. , Gütschow M. , Engst W. , Blaut M. . ( 2001; ). Degradation of quercetin and luteolin by Eubacterium ramulus . . Appl Environ Microbiol 67:, 5558–5567. [CrossRef] [PubMed]
    [Google Scholar]
  9. Brencic A. , Winans S. C. . ( 2005; ). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. . Microbiol Mol Biol Rev 69:, 155–194. [CrossRef] [PubMed]
    [Google Scholar]
  10. Coco W. M. , Rothmel R. K. , Henikoff S. , Chakrabarty A. M. . ( 1993; ). Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida . . J Bacteriol 175:, 417–427.[PubMed]
    [Google Scholar]
  11. Cook N. C. , Samman S. . ( 1996; ). Flavonoids – chemistry, metabolism, cardioprotective effects and dietary sources. . J Nutr Biochem 7:, 66–76. [CrossRef]
    [Google Scholar]
  12. Das S. , Rosazza J. P. N. . ( 2006; ). Microbial and enzymatic transformations of flavonoids. . J Nat Prod 69:, 499–508. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dénarié J. , Debellé F. , Rosenberg C. . ( 1992; ). Signaling and host range variation in nodulation. . Annu Rev Microbiol 46:, 497–531. [CrossRef] [PubMed]
    [Google Scholar]
  14. Durfee T. , Nelson R. , Baldwin S. , Plunkett G. III , Burland V. , Mau B. , Petrosino J. F. , Qin X. , Muzny D. M. . & other authors ( 2008; ). The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. . J Bacteriol 190:, 2597–2606. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gough C. , Galera C. , Vasse J. , Webster G. , Cocking E. C. , Dénarié J. . ( 1997; ). Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. . Mol Plant Microbe Interact 10:, 560–570. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hirooka K. , Kunikane S. , Matsuoka H. , Yoshida K. I. , Kumamoto K. , Tojo S. , Fujita Y. . ( 2007; ). Dual regulation of the Bacillus subtilis regulon comprising the lmrAB and yxaGH operons and yxaF gene by two transcriptional repressors, LmrA and YxaF, in response to flavonoids. . J Bacteriol 189:, 5170–5182. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hirooka K. , Danjo Y. , Hanano Y. , Kunikane S. , Matsuoka H. , Tojo S. , Fujita Y. . ( 2009; ). Regulation of the Bacillus subtilis divergent yetL and yetM genes by a transcriptional repressor, YetL, in response to flavonoids. . J Bacteriol 191:, 3685–3697. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hopper W. , Mahadevan A. . ( 1997; ). Degradation of cathecin by Bradyrhizobium japonicum . . Biodeg 8:, 159–165. [CrossRef]
    [Google Scholar]
  19. Jeffrey A. M. , Jerina D. M. , Self R. , Evans W. C. . ( 1972; ). The bacterial degradation of flavonoids. Oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp.. Biochem J 130:, 383–390.[PubMed]
    [Google Scholar]
  20. Jiménez J. I. , Miñambres B. , García J. L. , Díaz E. . ( 2002; ). Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. . Environ Microbiol 4:, 824–841. [CrossRef] [PubMed]
    [Google Scholar]
  21. Klassen G. , Pedrosa F. O. , Souza E. M. , Funayama S. , Rigo L. U. . ( 1997; ). Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SmR1. . Can J Microbiol 43:, 887–891. [CrossRef]
    [Google Scholar]
  22. Maddocks S. E. , Oyston P. C. F. . ( 2008; ). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. . Microbiology 154:, 3609–3623. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Mulligan J. T. , Long S. R. . ( 1989; ). A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. . Genetics 122:, 7–18.[PubMed]
    [Google Scholar]
  25. Pedrosa F. O. , Monteiro R. A. , Wassem R. , Cruz L. M. , Ayub R. A. , Colauto N. B. , Fernandez M. A. , Fungaro M. H. P. , Grisard E. C. . & other authors ( 2011; ). Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. . PLoS Genet 7:, e1002064. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pérez-Pantoja D. , De la Iglesia R. , Pieper D. H. , González B. . ( 2008; ). Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. . FEMS Microbiol Rev 32:, 736–794. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pillai B. V. S. , Swarup S. . ( 2002; ). Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. . Appl Environ Microbiol 68:, 143–151. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rao J. R. , Cooper J. E. . ( 1994; ). Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. . J Bacteriol 176:, 5409–5413.[PubMed]
    [Google Scholar]
  29. Rao J. R. , Cooper J. E. . ( 1995; ). Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. . Mol Plant Microbe Interact 8:, 855–862. [CrossRef]
    [Google Scholar]
  30. Rao J. R. , Sharma N. D. , Hamilton J. T. G. , Boyd D. R. , Cooper J. E. . ( 1991; ). Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). . Appl Environ Microbiol 57:, 1563–1565.[PubMed]
    [Google Scholar]
  31. Reddy P. M. , Rendón-Anaya M. , del Río M. D. S. , Khandual S. . ( 2007; ). Flavonoids as signalling molecules and regulators of root nodule development. . Dynamic Soil, Dynamic Plant 1:, 83–94.
    [Google Scholar]
  32. Romero-Arroyo C. E. , Schell M. A. , Gaines G. L. III , Neidle E. L. . ( 1995; ). catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus . . J Bacteriol 177:, 5891–5898.[PubMed]
    [Google Scholar]
  33. Rothmel R. K. , Aldrich T. L. , Houghton J. E. , Coco W. M. , Ornston L. N. , Chakrabarty A. M. . ( 1990; ). Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family. . J Bacteriol 172:, 922–931.[PubMed]
    [Google Scholar]
  34. Schneider H. , Blaut M. . ( 2000; ). Anaerobic degradation of flavonoids by Eubacterium ramulus . . Arch Microbiol 173:, 71–75. [CrossRef] [PubMed]
    [Google Scholar]
  35. Schoefer L. , Mohan R. , Schwiertz A. , Braune A. , Blaut M. . ( 2003; ). Anaerobic degradation of flavonoids by Clostridium orbiscindens . . Appl Environ Microbiol 69:, 5849–5854. [CrossRef] [PubMed]
    [Google Scholar]
  36. Spaink H. P. , Okker R. J. H. , Wijffelman C. A. , Pees E. , Lugtenberg B. J. J. . ( 1987; ). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. . Plant Mol Biol 9:, 27–39.[PubMed] [CrossRef]
    [Google Scholar]
  37. Suen W. C. , Spain J. C. . ( 1993; ). Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. . J Bacteriol 175:, 1831–1837.[PubMed]
    [Google Scholar]
  38. Williams C. A. , Grayer R. J. . ( 2004; ). Anthocyanins and other flavonoids. . Nat Prod Rep 21:, 539–573. [CrossRef] [PubMed]
    [Google Scholar]
  39. Winter J. , Moore L. H. , Dowell V. R. Jr , Bokkenheuser V. D. . ( 1989; ). C-ring cleavage of flavonoids by human intestinal bacteria. . Appl Environ Microbiol 55:, 1203–1208.[PubMed]
    [Google Scholar]
  40. You I. S. , Ghosal D. , Gunsalus I. C. . ( 1988; ). Nucleotide sequence of plasmid NAH7 gene nahR and DNA binding of the nahR product. . J Bacteriol 170:, 5409–5415.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061135-0
Loading
/content/journal/micro/10.1099/mic.0.061135-0
Loading

Data & Media loading...

Supplements

Figs S1 - S3 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error