1887

Abstract

Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus . To verify that members of the genus were actively utilizing triclosan, a specific probe targeting the group was designed and applied to the enrichment culture incubated with C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from C-labelled triclosan by the . The high representation of in the C-labelled DNA clone library and its observed utilization of C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061077-0
2012-11-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2796.html?itemId=/content/journal/micro/10.1099/mic.0.061077-0&mimeType=html&fmt=ahah

References

  1. Adolfsson-Erici M., Pettersson M., Parkkonen J., Sturve J.. ( 2002;). Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere46:1485–1489 [CrossRef][PubMed]
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. ( 1990;). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol56:1919–1925[PubMed]
    [Google Scholar]
  3. Balmer M. E., Poiger T., Droz C., Romanin K., Bergqvist P. A., Müller M. D., Buser H. R.. ( 2004;). Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol38:390–395 [CrossRef][PubMed]
    [Google Scholar]
  4. Bester K.. ( 2003;). Triclosan in a sewage treatment process–balances and monitoring data. Water Res37:3891–3896 [CrossRef][PubMed]
    [Google Scholar]
  5. Bester K.. ( 2005;). Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol49:9–17 [CrossRef][PubMed]
    [Google Scholar]
  6. Caspi R., Altman T., Dreher K., Fulcher C. A., Subhraveti P., Keseler I. M., Kothari A., Krummenacker M., Latendresse M.. & other authors ( 2012;). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res40:Database issueD742–D753 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen X., Nielsen J. L., Furgal K., Liu Y., Lolas I. B., Bester K.. ( 2011;). Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere84:452–456 [CrossRef][PubMed]
    [Google Scholar]
  8. Chongcharoen R., Smith T. J., Flint K. P., Dalton H.. ( 2005;). Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology151:2615–2622[CrossRef]
    [Google Scholar]
  9. Collins T. J.. ( 2007;). ImageJ for microscopy. Biotechniques43:Suppl. 1S25–S30 [CrossRef][PubMed]
    [Google Scholar]
  10. Daims H., Brühl A., Amann R., Schleifer K. H., Wagner M.. ( 1999;). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444 [CrossRef][PubMed]
    [Google Scholar]
  11. DeSalva S. J., Kong B. M., Lin Y. J.. ( 1989;). Triclosan: a safety profile. Am J Dent2:Spec No 2185–196[PubMed]
    [Google Scholar]
  12. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.. ( 2006;). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol72:5069–5072 [CrossRef][PubMed]
    [Google Scholar]
  13. Gangadharan Puthiya Veetil P., Vijaya Nadaraja A., Bhasi A., Khan S., Bhaskaran K.. ( 2012;). Degradation of triclosan under aerobic, anoxic, and anaerobic conditions. Appl Biochem Biotechnol167:1603–1612 [CrossRef][PubMed]
    [Google Scholar]
  14. Hanson R. S., Hanson T. E.. ( 1996;). Methanotrophic bacteria. Microbiol Rev60:439–471[PubMed]
    [Google Scholar]
  15. Hay A. G., Dees P. M., Sayler G. S.. ( 2001;). Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol36:105–112 [CrossRef][PubMed]
    [Google Scholar]
  16. Heath R. J., Rubin J. R., Holland D. R., Zhang E., Snow M. E., Rock C. O.. ( 1999;). Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem274:11110–11114 [CrossRef][PubMed]
    [Google Scholar]
  17. Heidler J., Halden R. U.. ( 2007;). Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere66:362–369 [CrossRef][PubMed]
    [Google Scholar]
  18. Hovander L., Malmberg T., Athanasiadou M., Athanassiadis I., Rahm S., Bergman A., Wehler E. K.. ( 2002;). Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol42:105–117 [CrossRef][PubMed]
    [Google Scholar]
  19. Hu L. B., Yang J. D., Zhou W., Yin Y. F., Chen J., Shi Z. Q.. ( 2009;). Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. New Biotechnol26:205–211 [CrossRef][PubMed]
    [Google Scholar]
  20. Hundt K., Martin D., Hammer E., Jonas U., Kindermann M. K., Schauer F.. ( 2000;). Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus . Appl Environ Microbiol66:4157–4160 [CrossRef][PubMed]
    [Google Scholar]
  21. Jones R. D., Jampani H. B., Newman J. L., Lee A. S.. ( 2000;). Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control28:184–196 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim Y. M., Murugesan K., Schmidt S., Bokare V., Jeon J. R., Kim E. J., Chang Y. S.. ( 2011;). Triclosan susceptibility and co-metabolism–a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol102:2206–2212 [CrossRef][PubMed]
    [Google Scholar]
  23. Koh S. C., Bowman J. P., Sayler G. S.. ( 1993;). Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol59:960–967 [CrossRef][PubMed]
    [Google Scholar]
  24. Kristiansen A., Lindholst S., Feilberg A., Nielsen P. H., Neufeld J. D., Nielsen J. L.. ( 2011a;). Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility. Appl Environ Microbiol77:8595–8604 [CrossRef][PubMed]
    [Google Scholar]
  25. Kristiansen A., Pedersen K. H., Nielsen P. H., Nielsen L. P., Nielsen J. L., Schramm A.. ( 2011b;). Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Syst Appl Microbiol34:344–352 [CrossRef][PubMed]
    [Google Scholar]
  26. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–175 Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  27. Lee E. Y., Jun Y. S., Cho K. S., Ryu H. W.. ( 2002;). Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J Air Waste Manag Assoc52:400–406 [CrossRef][PubMed]
    [Google Scholar]
  28. Lindström A., Buerge I. J., Poiger T., Bergqvist P. A., Müller M. D., Buser H. R.. ( 2002;). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol36:2322–2329 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu Z., Yang C., Qiao C.. ( 2007;). Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett277:150–156 [CrossRef][PubMed]
    [Google Scholar]
  30. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  31. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Stredwick J. M., Garrity G. M., Li B., Olsen G. J.. & other authors ( 2000;). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res28:173–174 [CrossRef][PubMed]
    [Google Scholar]
  32. Manefield M., Griffiths R., McNamara N. P., Sleep D., Ostle N., Whiteley A.. ( 2007;). Insights into the fate of a 13C labelled phenol pulse for stable isotope probing (SIP) experiments. J Microbiol Methods69:340–344 [CrossRef][PubMed]
    [Google Scholar]
  33. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H.. ( 1992;). Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol15:593–600 [CrossRef]
    [Google Scholar]
  34. McMurry L. M., Oethinger M., Levy S. B.. ( 1998;). Triclosan targets lipid synthesis. Nature394:531–532 [CrossRef][PubMed]
    [Google Scholar]
  35. Meade M. J., Waddell R. L., Callahan T. M.. ( 2001;). Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett204:45–48 [CrossRef][PubMed]
    [Google Scholar]
  36. Miller T. R., Heidler J., Chillrud S. N., DeLaquil A., Ritchie J. C., Mihalic J. N., Bopp R., Halden R. U.. ( 2008;). Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ Sci Technol42:4570–4576 [CrossRef][PubMed]
    [Google Scholar]
  37. Neufeld J. D., Vohra J., Dumont M. G., Lueders T., Manefield M., Friedrich M. W., Murrell J. C.. ( 2007;). DNA stable-isotope probing. Nat Protoc2:860–866 [CrossRef][PubMed]
    [Google Scholar]
  38. Nielsen J. L.. ( 2009;). Protocol for fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotides. FISH Handbook for Biological Wastewater Treatment: Identification and Quantification of Microorganisms in Activated Sludge and Biofilms by FISH73–84 Nielsen P. H., Daims H., Lemmer H.. London: IWA Publishing Company;
    [Google Scholar]
  39. Nielsen J. L., Nielsen P. H.. ( 2005;). Advances in microscopy: microautoradiography of single cells. Methods Enzymol397:237–256 [CrossRef][PubMed]
    [Google Scholar]
  40. Radajewski S., Ineson P., Parekh N. R., Murrell J. C.. ( 2000;). Stable-isotope probing as a tool in microbial ecology. Nature403:646–649 [CrossRef][PubMed]
    [Google Scholar]
  41. Regös J., Zak O., Solf R., Vischer W. A., Weirich E. G.. ( 1979;). Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial agent for topical application. II. Comparison with some other antimicrobial agents. Dermatologica158:72–79[PubMed][CrossRef]
    [Google Scholar]
  42. Roh K., Subramanya N., Zhao F., Yu C. P., Sandt J., Chu K. H.. ( 2009;). Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere77:1084–1089[PubMed][CrossRef]
    [Google Scholar]
  43. Sánchez-Brunete C., Miguel E., Albero B., Tadeo J. L.. ( 2010;). Determination of triclosan and methyl triclosan in environmental solid samples by matrix solid-phase dispersion and gas chromatography-mass spectrometry. J Sep Sci33:2768–2775 [CrossRef][PubMed]
    [Google Scholar]
  44. Sandborgh-Englund G., Adolfsson-Erici M., Odham G., Ekstrand J.. ( 2006;). Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A69:1861–1873 [CrossRef][PubMed]
    [Google Scholar]
  45. Schweizer H. P.. ( 2001;). Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett202:1–7 [CrossRef][PubMed]
    [Google Scholar]
  46. Singer H., Müller S., Tixier C., Pillonel L.. ( 2002;). Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol36:4998–5004 [CrossRef][PubMed]
    [Google Scholar]
  47. Soares A., Guieysse B., Delgado O., Mattiasson B.. ( 2003;). Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett25:731–738 [CrossRef][PubMed]
    [Google Scholar]
  48. Spokes J. R., Walker N.. ( 1974;). Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria. Arch Mikrobiol96:125–134[PubMed][CrossRef]
    [Google Scholar]
  49. Stasinakis A. S., Kordoutis C. I., Tsiouma V. C., Gatidou G., Thomaidis N. S.. ( 2010;). Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresour Technol101:2090–2095 [CrossRef][PubMed]
    [Google Scholar]
  50. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  51. Tsuji K., Tsien H. C., Hanson R. S., DePalma S. R., Scholtz R., LaRoche S.. ( 1990;). 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol136:1–10 [CrossRef][PubMed]
    [Google Scholar]
  52. Wallner G., Amann R., Beisker W.. ( 1993;). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry14:136–143 [CrossRef][PubMed]
    [Google Scholar]
  53. Whittenbury R., Phillips K. C., Wilkinson J. F.. ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol61:205–218 [CrossRef][PubMed]
    [Google Scholar]
  54. Wilson B. A., Smith V. H., deNoyelles F. Jr, Larive C. K.. ( 2003;). Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol37:1713–1719 [CrossRef][PubMed]
    [Google Scholar]
  55. Woods A., Watwood M., Schwartz E.. ( 2011;). Identification of a toluene-degrading bacterium from a soil sample through H2 18O DNA stable isotope probing. Appl Environ Microbiol77:5995–5999 [CrossRef][PubMed]
    [Google Scholar]
  56. Ye X., Bishop A. M., Needham L. L., Calafat A. M.. ( 2008;). Automated online column-switching HPLC-MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal Chim Acta622:150–156 [CrossRef][PubMed]
    [Google Scholar]
  57. Zemb O., Lee M., Gutierrez-Zamora M. L., Hamelin J., Coupland K., Hazrin-Chong N. H., Taleb I., Manefield M.. ( 2012;). Improvement of RNA-SIP by pyrosequencing to identify putative 4-n-nonylphenol degraders in activated sludge. Water Res46:601–610 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061077-0
Loading
/content/journal/micro/10.1099/mic.0.061077-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error