1887

Abstract

HU is a non-sequence-specific DNA-binding protein and one of the most abundant nucleoid-associated proteins in the bacterial cell. Like , the genome of is predicted to encode both the HUα (PG1258) and the HUβ (PG0121) subunit. We have previously reported that PG0121 encodes a non-specific DNA-binding protein and that PG0121 is co-transcribed with the K-antigen capsule synthesis operon. We also reported that deletion of PG0121 resulted in downregulation of capsule operon expression and produced a strain that is phenotypically deficient in surface polysaccharide production. Here, we show through complementation experiments in an MG1655 double mutant strain that PG0121 encodes a functional HU homologue. Microarray and quantitative RT-PCR analysis were used to further investigate global transcriptional regulation by HUβ using comparative expression profiling of the PG0121 (HUβ) mutant strain to the parent strain, W83. Our analysis determined that expression of genes encoding proteins involved in a variety of biological functions, including iron acquisition, cell division and translation, as well as a number of predicted nucleoid associated proteins were altered in the PG0121 mutant. Phenotypic and quantitative real-time-PCR (qRT-PCR) analyses determined that under iron-limiting growth conditions, cell division and viability were defective in the PG0121 mutant. Collectively, our studies show that PG0121 does indeed encode a functional HU homologue, and HUβ has global regulatory functions in ; it affects not only production of capsular polysaccharides but also expression of genes involved in basic functions, such as cell wall synthesis, cell division and iron uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061002-0
2013-02-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/219.html?itemId=/content/journal/micro/10.1099/mic.0.061002-0&mimeType=html&fmt=ahah

References

  1. Aki T., Choy H. E., Adhya S. ( 1996). Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1:179–188 [View Article][PubMed]
    [Google Scholar]
  2. Alberti-Segui C., Arndt A., Cugini C., Priyadarshini R., Davey M. E. ( 2010). HU protein affects transcription of surface polysaccharide synthesis genes in Porphyromonas gingivalis . J Bacteriol 192:6217–6229 [View Article][PubMed]
    [Google Scholar]
  3. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A. ( 1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181:6361–6370[PubMed]
    [Google Scholar]
  4. Bahloul A., Boubrik F., Rouviere-Yaniv J. ( 2001). Roles of Escherichia coli histone-like protein HU in DNA replication: HU-beta suppresses the thermosensitivity of dnaA46ts . Biochimie 83:219–229 [View Article][PubMed]
    [Google Scholar]
  5. Balandina A., Claret L., Hengge-Aronis R., Rouviere-Yaniv J. ( 2001). The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol 39:1069–1079 [View Article][PubMed]
    [Google Scholar]
  6. Balandina A., Kamashev D., Rouviere-Yaniv J. ( 2002). The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem 277:27622–27628 [View Article][PubMed]
    [Google Scholar]
  7. Bensaid A., Almeida A., Drlica K., Rouviere-Yaniv J. ( 1996). Cross-talk between topoisomerase I and HU in Escherichia coli . J Mol Biol 256:292–300 [View Article][PubMed]
    [Google Scholar]
  8. Bi H., Sun L., Fukamachi T., Saito H., Kobayashi H. ( 2009). HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli . Curr Microbiol 58:443–448 [View Article][PubMed]
    [Google Scholar]
  9. Bonnefoy E., Almeida A., Rouviere-Yaniv J. ( 1989). Lon-dependent regulation of the DNA binding protein HU in Escherichia coli . Proc Natl Acad Sci U S A 86:7691–7695 [View Article][PubMed]
    [Google Scholar]
  10. Bonnefoy E., Takahashi M., Yaniv J. R. ( 1994). DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol 242:116–129 [View Article][PubMed]
    [Google Scholar]
  11. Boubrik F., Rouviere-Yaniv J. ( 1995). Increased sensitivity to γ irradiation in bacteria lacking protein HU. Proc Natl Acad Sci U S A 92:3958–3962 [View Article][PubMed]
    [Google Scholar]
  12. Brunner J., Scheres N., El Idrissi N. B., Deng D. M., Laine M. L., van Winkelhoff A. J., Crielaard W. ( 2010). The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol 10:5 [View Article][PubMed]
    [Google Scholar]
  13. Chen T., Abbey K., Deng W. J., Cheng M. C. ( 2005). The bioinformatics resource for oral pathogens. Nucleic Acids Res 33:Web Server issueW734–W740 [View Article][PubMed]
    [Google Scholar]
  14. Choil J.-I., Nakagawa T., Yamada S., Takazoe I., Okuda K. ( 1990). Clinical, microbiological and immunological studies on recurrent periodontal disease. J Clin Periodontol 17:426–434 [View Article][PubMed]
    [Google Scholar]
  15. Christopher A. B., Arndt A., Cugini C., Davey M. E. ( 2010). A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development. Microbiology 156:3469–3477 [View Article][PubMed]
    [Google Scholar]
  16. Chung W. O., Park Y., Lamont R. J., McNab R., Barbieri B., Demuth D. R. ( 2001). Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183:3903–3909 [View Article][PubMed]
    [Google Scholar]
  17. Comstock L. E., Kasper D. L. ( 2006). Bacterial glycans: key mediators of diverse host immune responses. Cell 126:847–850 [View Article][PubMed]
    [Google Scholar]
  18. Dashper S. G., Hendtlass A., Slakeski N., Jackson C., Cross K. J., Brownfield L., Hamilton R., Barr I., Reynolds E. C. ( 2000). Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis . J Bacteriol 182:6456–6462 [View Article][PubMed]
    [Google Scholar]
  19. Davey M. E., Duncan M. J. ( 2006). Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis . J Bacteriol 188:5510–5523 [View Article][PubMed]
    [Google Scholar]
  20. Dewar S. J., Dorazi R. ( 2000). Control of division gene expression in Escherichia coli . FEMS Microbiol Lett 187:1–7 [View Article][PubMed]
    [Google Scholar]
  21. Dillon S. C., Dorman C. J. ( 2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195 [View Article][PubMed]
    [Google Scholar]
  22. Ditto M. D., Roberts D., Weisberg R. A. ( 1994). Growth phase variation of integration host factor level in Escherichia coli . J Bacteriol 176:3738–3748[PubMed]
    [Google Scholar]
  23. Dorn B. R., Burks J. N., Seifert K. N., Progulske-Fox A. ( 2000). Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis . FEMS Microbiol Lett 187:139–144 [View Article][PubMed]
    [Google Scholar]
  24. Dorn B. R., Harris L. J., Wujick C. T., Vertucci F. J., Progulske-Fox A. ( 2002). Invasion of vascular cells in vitro by Porphyromonas endodontalis . Int Endod J 35:366–371 [View Article][PubMed]
    [Google Scholar]
  25. Dri A. M., Rouviere-Yaniv J., Moreau P. L. ( 1991). Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein. J Bacteriol 173:2852–2863[PubMed]
    [Google Scholar]
  26. Drlica K., Rouviere-Yaniv J. ( 1987). Histonelike proteins of bacteria. Microbiol Rev 51:301–319[PubMed]
    [Google Scholar]
  27. Dzink J. L., Socransky S. S., Haffajee A. D. ( 1988). The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol 15:316–323 [View Article][PubMed]
    [Google Scholar]
  28. Errington J., Daniel R. A., Scheffers D. J. ( 2003). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65 [View Article][PubMed]
    [Google Scholar]
  29. Fernández S., Rojo F., Alonso J. C. ( 1997). The Bacillus subtilis chromatin-associated protein Hbsu is involved in DNA repair and recombination. Mol Microbiol 23:1169–1179 [View Article][PubMed]
    [Google Scholar]
  30. Gao J. L., Nguyen K. A., Hunter N. ( 2010). Characterization of a hemophore-like protein from Porphyromonas gingivalis . J Biol Chem 285:40028–40038 [View Article][PubMed]
    [Google Scholar]
  31. Gardner R. G., Russell J. B., Wilson D. B., Wang G. R., Shoemaker N. B. ( 1996). Use of a modified BacteroidesPrevotella shuttle vector to transfer a reconstructed β-1,4-d-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B14. Appl Environ Microbiol 62:196–202[PubMed]
    [Google Scholar]
  32. Giangrossi M., Giuliodori A. M., Gualerzi C. O., Pon C. L. ( 2002). Selective expression of the β-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli . Mol Microbiol 44:205–216 [View Article][PubMed]
    [Google Scholar]
  33. Grenier D., Goulet V., Mayrand D. ( 2001). The capacity of Porphyromonas gingivalis to multiply under iron-limiting conditions correlates with its pathogenicity in an animal model. J Dent Res 80:1678–1682 [View Article][PubMed]
    [Google Scholar]
  34. Grossi S. G., Zambon J. J., Ho A. W., Koch G., Dunford R. G., Machtei E. E., Norderyd O. M., Genco R. J. ( 1994). Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol 65:260–267 [View Article][PubMed]
    [Google Scholar]
  35. Grove A. ( 2011). Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 13:1–12[PubMed]
    [Google Scholar]
  36. Hiratsuka K., Kiyama-Kishikawa M., Abiko Y. ( 2010). Hemin-binding protein 35 (HBP35) plays an important role in bacteria–mammalian cells interactions in Porphyromonas gingivalis . Microb Pathog 48:116–123 [View Article][PubMed]
    [Google Scholar]
  37. Jaffe A., Vinella D., D’Ari R. ( 1997). The Escherichia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via MinCDE. J Bacteriol 179:3494–3499[PubMed]
    [Google Scholar]
  38. James C. E., Hasegawa Y., Park Y., Yeung V., Tribble G. D., Kuboniwa M., Demuth D. R., Lamont R. J. ( 2006). LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis . Infect Immun 74:3834–3844 [View Article][PubMed]
    [Google Scholar]
  39. Jandik K. A., Bélanger M., Low S. L., Dorn B. R., Yang M. C., Progulske-Fox A. ( 2008). Invasive differences among Porphyromonas gingivalis strains from healthy and diseased periodontal sites. J Periodontal Res 43:524–530 [View Article][PubMed]
    [Google Scholar]
  40. Kar S., Adhya S. ( 2001). Recruitment of HU by piggyback: a special role of GalR in repressosome assembly. Genes Dev 15:2273–2281 [View Article][PubMed]
    [Google Scholar]
  41. Kar S., Edgar R., Adhya S. ( 2005). Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci U S A 102:16397–16402 [View Article][PubMed]
    [Google Scholar]
  42. Klein B. A., Tenorio E. L., Lazinski D. W., Camilli A., Duncan M. J., Hu L. T. ( 2012). Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis . BMC Genomics 13:578 [View Article][PubMed]
    [Google Scholar]
  43. Köhler P., Marahiel M. A. ( 1998). Mutational analysis of the nucleoid-associated protein HBsu of Bacillus subtilis . Mol Gen Genet 260:487–491 [View Article][PubMed]
    [Google Scholar]
  44. Lamont R. J., Jenkinson H. F. ( 2000). Subgingival colonization by Porphyromonas gingivalis . Oral Microbiol Immunol 15:341–349 [View Article][PubMed]
    [Google Scholar]
  45. Lewis J. P., Plata K., Yu F., Rosato A., Anaya C. ( 2006). Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology 152:3367–3382 [View Article][PubMed]
    [Google Scholar]
  46. Li S., Waters R. ( 1998). Escherichia coli strains lacking protein HU are UV sensitive due to a role for HU in homologous recombination. J Bacteriol 180:3750–3756[PubMed]
    [Google Scholar]
  47. Maeda K., Tribble G. D., Tucker C. M., Anaya C., Shizukuishi S., Lewis J. P., Demuth D. R., Lamont R. J. ( 2008). A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol 69:1153–1164 [View Article][PubMed]
    [Google Scholar]
  48. Matsumoto S., Yukitake H., Furugen M., Matsuo T., Mineta T., Yamada T. ( 1999). Identification of a novel DNA-binding protein from Mycobacterium bovis bacillus Calmette–Guérin. Microbiol Immunol 43:1027–1036[PubMed] [CrossRef]
    [Google Scholar]
  49. Miyabe I., Zhang Q. M., Kano Y., Yonei S. ( 2000). Histone-like protein HU is required for recA gene-dependent DNA repair and SOS induction pathways in UV-irradiated Escherichia coli . Int J Radiat Biol 76:43–49 [View Article][PubMed]
    [Google Scholar]
  50. Moore W. E., Moore L. H., Ranney R. R., Smibert R. M., Burmeister J. A., Schenkein H. A. ( 1991). The microflora of periodontal sites showing active destructive progression. J Clin Periodontol 18:729–739 [View Article][PubMed]
    [Google Scholar]
  51. Morales P., Rouviere-Yaniv J., Dreyfus M. ( 2002). The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity. J Bacteriol 184:1565–1570 [View Article][PubMed]
    [Google Scholar]
  52. Morash M. G., Brassinga A. K., Warthan M., Gourabathini P., Garduño R. A., Goodman S. D., Hoffman P. S. ( 2009). Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila . Appl Environ Microbiol 75:1826–1837 [View Article][PubMed]
    [Google Scholar]
  53. Nishikawa K., Yoshimura F., Duncan M. J. ( 2004). A regulation cascade controls expression of Porphyromonas gingivalis fimbriae via the FimR response regulator. Mol Microbiol 54:546–560 [View Article][PubMed]
    [Google Scholar]
  54. O’Brien-Simpson N. M., Veith P. D., Dashper S. G., Reynolds E. C. ( 2003). Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. Curr Protein Pept Sci 4:409–426 [View Article][PubMed]
    [Google Scholar]
  55. Oberto J., Bonnefoy E., Mouray E., Pellegrini O., Wikström P. M., Rouvière-Yaniv J. ( 1996). The Escherichia coli ribosomal protein S16 is an endonuclease. Mol Microbiol 19:1319–1330 [View Article][PubMed]
    [Google Scholar]
  56. Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J. ( 2009). The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4:e4367 [View Article][PubMed]
    [Google Scholar]
  57. Oblinger J. L., Koburger J. A. ( 1975). Understanding and teaching the most probable number technique. J Milk Food Technol 38:540–545
    [Google Scholar]
  58. Olczak T., Simpson W., Liu X., Genco C. A. ( 2005). Iron and heme utilization in Porphyromonas gingivalis . FEMS Microbiol Rev 29:119–144 [View Article][PubMed]
    [Google Scholar]
  59. Olczak T., Sroka A., Potempa J., Olczak M. ( 2008). Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 189:197–210 [View Article][PubMed]
    [Google Scholar]
  60. Painbeni E., Caroff M., Rouviere-Yaniv J. ( 1997). Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc Natl Acad Sci U S A 94:6712–6717 [View Article][PubMed]
    [Google Scholar]
  61. Pham K., Feik D., Hammond B. F., Rams T. E., Whitaker E. J. ( 2002). Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells and membrane vesicles. Platelets 13:21–30 [View Article][PubMed]
    [Google Scholar]
  62. Pinson V., Takahashi M., Rouviere-Yaniv J. ( 1999). Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol 287:485–497 [View Article][PubMed]
    [Google Scholar]
  63. Pontiggia A., Negri A., Beltrame M., Bianchi M. E. ( 1993). Protein HU binds specifically to kinked DNA. Mol Microbiol 7:343–350 [View Article][PubMed]
    [Google Scholar]
  64. Roper J. M., Raux E., Brindley A. A., Schubert H. L., Gharbia S. E., Shah H. N., Warren M. J. ( 2000). The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem 275:40316–40323 [View Article][PubMed]
    [Google Scholar]
  65. Shoji M., Shibata Y., Shiroza T., Yukitake H., Peng B., Chen Y. Y., Sato K., Naito M., Abiko Y. & other authors ( 2010). Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol 10:152 [View Article][PubMed]
    [Google Scholar]
  66. Simpson W., Olczak T., Genco C. A. ( 2000). Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis . J Bacteriol 182:5737–5748 [View Article][PubMed]
    [Google Scholar]
  67. Simpson W., Olczak T., Genco C. A. ( 2004). Lysine-specific gingipain K and heme/hemoglobin receptor HmuR are involved in heme utilization in Porphyromonas gingivalis . Acta Biochim Pol 51:253–262[PubMed]
    [Google Scholar]
  68. Singh A., Wyant T., Anaya-Bergman C., Aduse-Opoku J., Brunner J., Laine M. L., Curtis M. A., Lewis J. P. ( 2011). The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect Immun 79:4533–4542 [View Article][PubMed]
    [Google Scholar]
  69. Slakeski N., Dashper S. G., Cook P., Poon C., Moore C., Reynolds E. C. ( 2000). A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol 15:388–392 [View Article][PubMed]
    [Google Scholar]
  70. Smalley J. W., Byrne D. P., Birss A. J., Wojtowicz H., Sroka A., Potempa J., Olczak T. ( 2011). HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis . PLoS ONE 6:e17182 [View Article][PubMed]
    [Google Scholar]
  71. Swinger K. K., Rice P. A. ( 2004). IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35 [View Article][PubMed]
    [Google Scholar]
  72. Thanbichler M., Wang S. C., Shapiro L. ( 2005). The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem 96:506–521 [View Article][PubMed]
    [Google Scholar]
  73. Thomason L. C., Costantino N., Court D. L. ( 2007). E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol Chapter 1:17[PubMed]
    [Google Scholar]
  74. Ueshima J., Shoji M., Ratnayake D. B., Abe K., Yoshida S., Yamamoto K., Nakayama K. ( 2003). Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis . Infect Immun 71:1170–1178 [View Article][PubMed]
    [Google Scholar]
  75. Wada M., Kano Y., Ogawa T., Okazaki T., Imamoto F. ( 1988). Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli . J Mol Biol 204:581–591 [View Article][PubMed]
    [Google Scholar]
  76. Whiteford D. C., Klingelhoets J. J., Bambenek M. H., Dahl J. L. ( 2011). Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology 157:327–335 [View Article][PubMed]
    [Google Scholar]
  77. Wu J., Lin X., Xie H. ( 2009). Regulation of hemin binding proteins by a novel transcriptional activator in Porphyromonas gingivalis . J Bacteriol 191:115–122 [View Article][PubMed]
    [Google Scholar]
  78. Yilmaz O. ( 2008). The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology 154:2897–2903 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061002-0
Loading
/content/journal/micro/10.1099/mic.0.061002-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error