1887

Abstract

HU is a non-sequence-specific DNA-binding protein and one of the most abundant nucleoid-associated proteins in the bacterial cell. Like , the genome of is predicted to encode both the HUα (PG1258) and the HUβ (PG0121) subunit. We have previously reported that PG0121 encodes a non-specific DNA-binding protein and that PG0121 is co-transcribed with the K-antigen capsule synthesis operon. We also reported that deletion of PG0121 resulted in downregulation of capsule operon expression and produced a strain that is phenotypically deficient in surface polysaccharide production. Here, we show through complementation experiments in an MG1655 double mutant strain that PG0121 encodes a functional HU homologue. Microarray and quantitative RT-PCR analysis were used to further investigate global transcriptional regulation by HUβ using comparative expression profiling of the PG0121 (HUβ) mutant strain to the parent strain, W83. Our analysis determined that expression of genes encoding proteins involved in a variety of biological functions, including iron acquisition, cell division and translation, as well as a number of predicted nucleoid associated proteins were altered in the PG0121 mutant. Phenotypic and quantitative real-time-PCR (qRT-PCR) analyses determined that under iron-limiting growth conditions, cell division and viability were defective in the PG0121 mutant. Collectively, our studies show that PG0121 does indeed encode a functional HU homologue, and HUβ has global regulatory functions in ; it affects not only production of capsular polysaccharides but also expression of genes involved in basic functions, such as cell wall synthesis, cell division and iron uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061002-0
2013-02-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/2/219.html?itemId=/content/journal/micro/10.1099/mic.0.061002-0&mimeType=html&fmt=ahah

References

  1. Aki T., Choy H. E., Adhya S.. ( 1996;). Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells1:179–188 [CrossRef][PubMed]
    [Google Scholar]
  2. Alberti-Segui C., Arndt A., Cugini C., Priyadarshini R., Davey M. E.. ( 2010;). HU protein affects transcription of surface polysaccharide synthesis genes in Porphyromonas gingivalis . J Bacteriol192:6217–6229 [CrossRef][PubMed]
    [Google Scholar]
  3. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A.. ( 1999;). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol181:6361–6370[PubMed]
    [Google Scholar]
  4. Bahloul A., Boubrik F., Rouviere-Yaniv J.. ( 2001;). Roles of Escherichia coli histone-like protein HU in DNA replication: HU-beta suppresses the thermosensitivity of dnaA46ts . Biochimie83:219–229 [CrossRef][PubMed]
    [Google Scholar]
  5. Balandina A., Claret L., Hengge-Aronis R., Rouviere-Yaniv J.. ( 2001;). The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol39:1069–1079 [CrossRef][PubMed]
    [Google Scholar]
  6. Balandina A., Kamashev D., Rouviere-Yaniv J.. ( 2002;). The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem277:27622–27628 [CrossRef][PubMed]
    [Google Scholar]
  7. Bensaid A., Almeida A., Drlica K., Rouviere-Yaniv J.. ( 1996;). Cross-talk between topoisomerase I and HU in Escherichia coli . J Mol Biol256:292–300 [CrossRef][PubMed]
    [Google Scholar]
  8. Bi H., Sun L., Fukamachi T., Saito H., Kobayashi H.. ( 2009;). HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli . Curr Microbiol58:443–448 [CrossRef][PubMed]
    [Google Scholar]
  9. Bonnefoy E., Almeida A., Rouviere-Yaniv J.. ( 1989;). Lon-dependent regulation of the DNA binding protein HU in Escherichia coli . Proc Natl Acad Sci U S A86:7691–7695 [CrossRef][PubMed]
    [Google Scholar]
  10. Bonnefoy E., Takahashi M., Yaniv J. R.. ( 1994;). DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol242:116–129 [CrossRef][PubMed]
    [Google Scholar]
  11. Boubrik F., Rouviere-Yaniv J.. ( 1995;). Increased sensitivity to γ irradiation in bacteria lacking protein HU. Proc Natl Acad Sci U S A92:3958–3962 [CrossRef][PubMed]
    [Google Scholar]
  12. Brunner J., Scheres N., El Idrissi N. B., Deng D. M., Laine M. L., van Winkelhoff A. J., Crielaard W.. ( 2010;). The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol10:5 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen T., Abbey K., Deng W. J., Cheng M. C.. ( 2005;). The bioinformatics resource for oral pathogens. Nucleic Acids Res33:Web Server issueW734–W740 [CrossRef][PubMed]
    [Google Scholar]
  14. Choil J.-I., Nakagawa T., Yamada S., Takazoe I., Okuda K.. ( 1990;). Clinical, microbiological and immunological studies on recurrent periodontal disease. J Clin Periodontol17:426–434 [CrossRef][PubMed]
    [Google Scholar]
  15. Christopher A. B., Arndt A., Cugini C., Davey M. E.. ( 2010;). A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development. Microbiology156:3469–3477 [CrossRef][PubMed]
    [Google Scholar]
  16. Chung W. O., Park Y., Lamont R. J., McNab R., Barbieri B., Demuth D. R.. ( 2001;). Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol183:3903–3909 [CrossRef][PubMed]
    [Google Scholar]
  17. Comstock L. E., Kasper D. L.. ( 2006;). Bacterial glycans: key mediators of diverse host immune responses. Cell126:847–850 [CrossRef][PubMed]
    [Google Scholar]
  18. Dashper S. G., Hendtlass A., Slakeski N., Jackson C., Cross K. J., Brownfield L., Hamilton R., Barr I., Reynolds E. C.. ( 2000;). Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis . J Bacteriol182:6456–6462 [CrossRef][PubMed]
    [Google Scholar]
  19. Davey M. E., Duncan M. J.. ( 2006;). Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis . J Bacteriol188:5510–5523 [CrossRef][PubMed]
    [Google Scholar]
  20. Dewar S. J., Dorazi R.. ( 2000;). Control of division gene expression in Escherichia coli . FEMS Microbiol Lett187:1–7 [CrossRef][PubMed]
    [Google Scholar]
  21. Dillon S. C., Dorman C. J.. ( 2010;). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol8:185–195 [CrossRef][PubMed]
    [Google Scholar]
  22. Ditto M. D., Roberts D., Weisberg R. A.. ( 1994;). Growth phase variation of integration host factor level in Escherichia coli . J Bacteriol176:3738–3748[PubMed]
    [Google Scholar]
  23. Dorn B. R., Burks J. N., Seifert K. N., Progulske-Fox A.. ( 2000;). Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis . FEMS Microbiol Lett187:139–144 [CrossRef][PubMed]
    [Google Scholar]
  24. Dorn B. R., Harris L. J., Wujick C. T., Vertucci F. J., Progulske-Fox A.. ( 2002;). Invasion of vascular cells in vitro by Porphyromonas endodontalis . Int Endod J35:366–371 [CrossRef][PubMed]
    [Google Scholar]
  25. Dri A. M., Rouviere-Yaniv J., Moreau P. L.. ( 1991;). Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein. J Bacteriol173:2852–2863[PubMed]
    [Google Scholar]
  26. Drlica K., Rouviere-Yaniv J.. ( 1987;). Histonelike proteins of bacteria. Microbiol Rev51:301–319[PubMed]
    [Google Scholar]
  27. Dzink J. L., Socransky S. S., Haffajee A. D.. ( 1988;). The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol15:316–323 [CrossRef][PubMed]
    [Google Scholar]
  28. Errington J., Daniel R. A., Scheffers D. J.. ( 2003;). Cytokinesis in bacteria. Microbiol Mol Biol Rev67:52–65 [CrossRef][PubMed]
    [Google Scholar]
  29. Fernández S., Rojo F., Alonso J. C.. ( 1997;). The Bacillus subtilis chromatin-associated protein Hbsu is involved in DNA repair and recombination. Mol Microbiol23:1169–1179 [CrossRef][PubMed]
    [Google Scholar]
  30. Gao J. L., Nguyen K. A., Hunter N.. ( 2010;). Characterization of a hemophore-like protein from Porphyromonas gingivalis . J Biol Chem285:40028–40038 [CrossRef][PubMed]
    [Google Scholar]
  31. Gardner R. G., Russell J. B., Wilson D. B., Wang G. R., Shoemaker N. B.. ( 1996;). Use of a modified BacteroidesPrevotella shuttle vector to transfer a reconstructed β-1,4-d-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B14. Appl Environ Microbiol62:196–202[PubMed]
    [Google Scholar]
  32. Giangrossi M., Giuliodori A. M., Gualerzi C. O., Pon C. L.. ( 2002;). Selective expression of the β-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli . Mol Microbiol44:205–216 [CrossRef][PubMed]
    [Google Scholar]
  33. Grenier D., Goulet V., Mayrand D.. ( 2001;). The capacity of Porphyromonas gingivalis to multiply under iron-limiting conditions correlates with its pathogenicity in an animal model. J Dent Res80:1678–1682 [CrossRef][PubMed]
    [Google Scholar]
  34. Grossi S. G., Zambon J. J., Ho A. W., Koch G., Dunford R. G., Machtei E. E., Norderyd O. M., Genco R. J.. ( 1994;). Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol65:260–267 [CrossRef][PubMed]
    [Google Scholar]
  35. Grove A.. ( 2011;). Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol13:1–12[PubMed]
    [Google Scholar]
  36. Hiratsuka K., Kiyama-Kishikawa M., Abiko Y.. ( 2010;). Hemin-binding protein 35 (HBP35) plays an important role in bacteria–mammalian cells interactions in Porphyromonas gingivalis . Microb Pathog48:116–123 [CrossRef][PubMed]
    [Google Scholar]
  37. Jaffe A., Vinella D., D’Ari R.. ( 1997;). The Escherichia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via MinCDE. J Bacteriol179:3494–3499[PubMed]
    [Google Scholar]
  38. James C. E., Hasegawa Y., Park Y., Yeung V., Tribble G. D., Kuboniwa M., Demuth D. R., Lamont R. J.. ( 2006;). LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis . Infect Immun74:3834–3844 [CrossRef][PubMed]
    [Google Scholar]
  39. Jandik K. A., Bélanger M., Low S. L., Dorn B. R., Yang M. C., Progulske-Fox A.. ( 2008;). Invasive differences among Porphyromonas gingivalis strains from healthy and diseased periodontal sites. J Periodontal Res43:524–530 [CrossRef][PubMed]
    [Google Scholar]
  40. Kar S., Adhya S.. ( 2001;). Recruitment of HU by piggyback: a special role of GalR in repressosome assembly. Genes Dev15:2273–2281 [CrossRef][PubMed]
    [Google Scholar]
  41. Kar S., Edgar R., Adhya S.. ( 2005;). Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc Natl Acad Sci U S A102:16397–16402 [CrossRef][PubMed]
    [Google Scholar]
  42. Klein B. A., Tenorio E. L., Lazinski D. W., Camilli A., Duncan M. J., Hu L. T.. ( 2012;). Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis . BMC Genomics13:578 [CrossRef][PubMed]
    [Google Scholar]
  43. Köhler P., Marahiel M. A.. ( 1998;). Mutational analysis of the nucleoid-associated protein HBsu of Bacillus subtilis . Mol Gen Genet260:487–491 [CrossRef][PubMed]
    [Google Scholar]
  44. Lamont R. J., Jenkinson H. F.. ( 2000;). Subgingival colonization by Porphyromonas gingivalis . Oral Microbiol Immunol15:341–349 [CrossRef][PubMed]
    [Google Scholar]
  45. Lewis J. P., Plata K., Yu F., Rosato A., Anaya C.. ( 2006;). Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology152:3367–3382 [CrossRef][PubMed]
    [Google Scholar]
  46. Li S., Waters R.. ( 1998;). Escherichia coli strains lacking protein HU are UV sensitive due to a role for HU in homologous recombination. J Bacteriol180:3750–3756[PubMed]
    [Google Scholar]
  47. Maeda K., Tribble G. D., Tucker C. M., Anaya C., Shizukuishi S., Lewis J. P., Demuth D. R., Lamont R. J.. ( 2008;). A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol69:1153–1164 [CrossRef][PubMed]
    [Google Scholar]
  48. Matsumoto S., Yukitake H., Furugen M., Matsuo T., Mineta T., Yamada T.. ( 1999;). Identification of a novel DNA-binding protein from Mycobacterium bovis bacillus Calmette–Guérin. Microbiol Immunol43:1027–1036[PubMed][CrossRef]
    [Google Scholar]
  49. Miyabe I., Zhang Q. M., Kano Y., Yonei S.. ( 2000;). Histone-like protein HU is required for recA gene-dependent DNA repair and SOS induction pathways in UV-irradiated Escherichia coli . Int J Radiat Biol76:43–49 [CrossRef][PubMed]
    [Google Scholar]
  50. Moore W. E., Moore L. H., Ranney R. R., Smibert R. M., Burmeister J. A., Schenkein H. A.. ( 1991;). The microflora of periodontal sites showing active destructive progression. J Clin Periodontol18:729–739 [CrossRef][PubMed]
    [Google Scholar]
  51. Morales P., Rouviere-Yaniv J., Dreyfus M.. ( 2002;). The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity. J Bacteriol184:1565–1570 [CrossRef][PubMed]
    [Google Scholar]
  52. Morash M. G., Brassinga A. K., Warthan M., Gourabathini P., Garduño R. A., Goodman S. D., Hoffman P. S.. ( 2009;). Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila . Appl Environ Microbiol75:1826–1837 [CrossRef][PubMed]
    [Google Scholar]
  53. Nishikawa K., Yoshimura F., Duncan M. J.. ( 2004;). A regulation cascade controls expression of Porphyromonas gingivalis fimbriae via the FimR response regulator. Mol Microbiol54:546–560 [CrossRef][PubMed]
    [Google Scholar]
  54. O’Brien-Simpson N. M., Veith P. D., Dashper S. G., Reynolds E. C.. ( 2003;). Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. Curr Protein Pept Sci4:409–426 [CrossRef][PubMed]
    [Google Scholar]
  55. Oberto J., Bonnefoy E., Mouray E., Pellegrini O., Wikström P. M., Rouvière-Yaniv J.. ( 1996;). The Escherichia coli ribosomal protein S16 is an endonuclease. Mol Microbiol19:1319–1330 [CrossRef][PubMed]
    [Google Scholar]
  56. Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J.. ( 2009;). The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE4:e4367 [CrossRef][PubMed]
    [Google Scholar]
  57. Oblinger J. L., Koburger J. A.. ( 1975;). Understanding and teaching the most probable number technique. J Milk Food Technol38:540–545
    [Google Scholar]
  58. Olczak T., Simpson W., Liu X., Genco C. A.. ( 2005;). Iron and heme utilization in Porphyromonas gingivalis . FEMS Microbiol Rev29:119–144 [CrossRef][PubMed]
    [Google Scholar]
  59. Olczak T., Sroka A., Potempa J., Olczak M.. ( 2008;). Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol189:197–210 [CrossRef][PubMed]
    [Google Scholar]
  60. Painbeni E., Caroff M., Rouviere-Yaniv J.. ( 1997;). Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc Natl Acad Sci U S A94:6712–6717 [CrossRef][PubMed]
    [Google Scholar]
  61. Pham K., Feik D., Hammond B. F., Rams T. E., Whitaker E. J.. ( 2002;). Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells and membrane vesicles. Platelets13:21–30 [CrossRef][PubMed]
    [Google Scholar]
  62. Pinson V., Takahashi M., Rouviere-Yaniv J.. ( 1999;). Differential binding of the Escherichia coli HU, homodimeric forms and heterodimeric form to linear, gapped and cruciform DNA. J Mol Biol287:485–497 [CrossRef][PubMed]
    [Google Scholar]
  63. Pontiggia A., Negri A., Beltrame M., Bianchi M. E.. ( 1993;). Protein HU binds specifically to kinked DNA. Mol Microbiol7:343–350 [CrossRef][PubMed]
    [Google Scholar]
  64. Roper J. M., Raux E., Brindley A. A., Schubert H. L., Gharbia S. E., Shah H. N., Warren M. J.. ( 2000;). The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem275:40316–40323 [CrossRef][PubMed]
    [Google Scholar]
  65. Shoji M., Shibata Y., Shiroza T., Yukitake H., Peng B., Chen Y. Y., Sato K., Naito M., Abiko Y.. & other authors ( 2010;). Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol10:152 [CrossRef][PubMed]
    [Google Scholar]
  66. Simpson W., Olczak T., Genco C. A.. ( 2000;). Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis . J Bacteriol182:5737–5748 [CrossRef][PubMed]
    [Google Scholar]
  67. Simpson W., Olczak T., Genco C. A.. ( 2004;). Lysine-specific gingipain K and heme/hemoglobin receptor HmuR are involved in heme utilization in Porphyromonas gingivalis . Acta Biochim Pol51:253–262[PubMed]
    [Google Scholar]
  68. Singh A., Wyant T., Anaya-Bergman C., Aduse-Opoku J., Brunner J., Laine M. L., Curtis M. A., Lewis J. P.. ( 2011;). The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect Immun79:4533–4542 [CrossRef][PubMed]
    [Google Scholar]
  69. Slakeski N., Dashper S. G., Cook P., Poon C., Moore C., Reynolds E. C.. ( 2000;). A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol15:388–392 [CrossRef][PubMed]
    [Google Scholar]
  70. Smalley J. W., Byrne D. P., Birss A. J., Wojtowicz H., Sroka A., Potempa J., Olczak T.. ( 2011;). HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis . PLoS ONE6:e17182 [CrossRef][PubMed]
    [Google Scholar]
  71. Swinger K. K., Rice P. A.. ( 2004;). IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol14:28–35 [CrossRef][PubMed]
    [Google Scholar]
  72. Thanbichler M., Wang S. C., Shapiro L.. ( 2005;). The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem96:506–521 [CrossRef][PubMed]
    [Google Scholar]
  73. Thomason L. C., Costantino N., Court D. L.. ( 2007;). E. coli genome manipulation by P1 transduction. Curr Protoc Mol BiolChapter 1:17[PubMed]
    [Google Scholar]
  74. Ueshima J., Shoji M., Ratnayake D. B., Abe K., Yoshida S., Yamamoto K., Nakayama K.. ( 2003;). Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis . Infect Immun71:1170–1178 [CrossRef][PubMed]
    [Google Scholar]
  75. Wada M., Kano Y., Ogawa T., Okazaki T., Imamoto F.. ( 1988;). Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli . J Mol Biol204:581–591 [CrossRef][PubMed]
    [Google Scholar]
  76. Whiteford D. C., Klingelhoets J. J., Bambenek M. H., Dahl J. L.. ( 2011;). Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology157:327–335 [CrossRef][PubMed]
    [Google Scholar]
  77. Wu J., Lin X., Xie H.. ( 2009;). Regulation of hemin binding proteins by a novel transcriptional activator in Porphyromonas gingivalis . J Bacteriol191:115–122 [CrossRef][PubMed]
    [Google Scholar]
  78. Yilmaz O.. ( 2008;). The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology154:2897–2903 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061002-0
Loading
/content/journal/micro/10.1099/mic.0.061002-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error