1887

Abstract

is a member of the complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics, including antimicrobial peptides. encodes a protein homologous to SuhB, an inositol-1-monophosphatase from , which was suggested to participate in post-transcriptional control of gene expression. In this work we show that a deletion of the -like gene in ) was associated with pleiotropic phenotypes. The Δ mutant had a growth defect manifested by an almost twofold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the type II and type VI secretion systems (T2SS and T6SS) activities revealed that these secretion systems were inactive in the Δ mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides such as gentamicin and kanamycin. Together, our results demonstrate that deletion compromises general protein secretion, including the activity of the T2SS and the T6SS, and affects polymyxin B resistance, motility and biofilm formation. The pleiotropic effects observed upon deletion demonstrate that plays a critical role in the physiology of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060988-0
2012-09-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2315.html?itemId=/content/journal/micro/10.1099/mic.0.060988-0&mimeType=html&fmt=ahah

References

  1. Abdulrahman B. A., Khweek A. A., Akhter A., Caution K., Kotrange S., Abdelaziz D. H., Newland C., Rosales-Reyes R., Kopp B.. & other authors ( 2011;). Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. . Autophagy 7:, 1359–1370. [CrossRef][PubMed]
    [Google Scholar]
  2. Aubert D. F., Flannagan R. S., Valvano M. A.. ( 2008;). A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. . Infect Immun 76:, 1979–1991. [CrossRef][PubMed]
    [Google Scholar]
  3. Aubert D., MacDonald D. K., Valvano M. A.. ( 2010;). BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. . J Biol Chem 285:, 35988–35998. [CrossRef][PubMed]
    [Google Scholar]
  4. Buroni S., Pasca M. R., Flannagan R. S., Bazzini S., Milano A., Bertani I., Venturi V., Valvano M. A., Riccardi G.. ( 2009;). Assessment of three resistance-nodulation-cell division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. . BMC Microbiol 9:, 200. [CrossRef][PubMed]
    [Google Scholar]
  5. Cascales E.. ( 2008;). The type VI secretion toolkit. . EMBO Rep 9:, 735–741. [CrossRef][PubMed]
    [Google Scholar]
  6. Chang S. F., Ng D., Baird L., Georgopoulos C.. ( 1991;). Analysis of an Escherichia coli dnaB temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. . J Biol Chem 266:, 3654–3660.[PubMed]
    [Google Scholar]
  7. Chen L., Roberts M. F.. ( 2000;). Overexpression, purification, and analysis of complementation behavior of E. coli SuhB protein: comparison with bacterial and archaeal inositol monophosphatases. . Biochemistry 39:, 4145–4153. [CrossRef][PubMed]
    [Google Scholar]
  8. Coenye T., Vandamme P.. ( 2003;). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5:, 719–729. [CrossRef][PubMed]
    [Google Scholar]
  9. Cox G. W., Mathieson B. J., Gandino L., Blasi E., Radzioch D., Varesio L.. ( 1989;). Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver. . J Natl Cancer Inst 81:, 1492–1496. [CrossRef][PubMed]
    [Google Scholar]
  10. Craig F. F., Coote J. G., Parton R., Freer J. H., Gilmour N. J.. ( 1989;). A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. . J Gen Microbiol 135:, 2885–2890.[PubMed]
    [Google Scholar]
  11. Eisenberg F. Jr. ( 1967;). d-Myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. . J Biol Chem 242:, 1375–1382.[PubMed]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. . Proc Natl Acad Sci U S A 76:, 1648–1652. [CrossRef][PubMed]
    [Google Scholar]
  13. Flannagan R. S., Linn T., Valvano M. A.. ( 2008;). A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. . Environ Microbiol 10:, 1652–1660. [CrossRef][PubMed]
    [Google Scholar]
  14. Flannagan R. S., Jaumouillé V., Huynh K. K., Plumb J. D., Downey G. P., Valvano M. A., Grinstein S.. ( 2012;). Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. . Cell Microbiol 14:, 239–254. [CrossRef][PubMed]
    [Google Scholar]
  15. González-Silva N., López-Lara I. M., Reyes-Lamothe R., Taylor A. M., Sumpton D., Thomas-Oates J., Geiger O.. ( 2011;). The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids. . Biochemistry 50:, 6396–6408. [CrossRef][PubMed]
    [Google Scholar]
  16. Guide S. V., Stock F., Gill V. J., Anderson V. L., Malech H. L., Gallin J. I., Holland S. M.. ( 2003;). Reinfection, rather than persistent infection, in patients with chronic granulomatous disease. . J Infect Dis 187:, 845–853. [CrossRef][PubMed]
    [Google Scholar]
  17. Hamad M. A., Skeldon A. M., Valvano M. A.. ( 2010;). Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. . Appl Environ Microbiol 76:, 3170–3176. [CrossRef][PubMed]
    [Google Scholar]
  18. Huber B., Riedel K., Köthe M., Givskov M., Molin S., Eberl L.. ( 2002;). Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. . Mol Microbiol 46:, 411–426. [CrossRef][PubMed]
    [Google Scholar]
  19. Hunt T. A., Kooi C., Sokol P. A., Valvano M. A.. ( 2004;). Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. . Infect Immun 72:, 4010–4022. [CrossRef][PubMed]
    [Google Scholar]
  20. Huynh K. K., Plumb J. D., Downey G. P., Valvano M. A., Grinstein S.. ( 2010;). Inactivation of macrophage Rab7 by Burkholderia cenocepacia. . J Innate Immun 2:, 522–533. [CrossRef][PubMed]
    [Google Scholar]
  21. Inada T., Nakamura Y.. ( 1995;). Lethal double-stranded RNA processing activity of ribonuclease III in the absence of SuhB protein of Escherichia coli. . Biochimie 77:, 294–302. [CrossRef][PubMed]
    [Google Scholar]
  22. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H.. ( 1984;). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. . J Pediatr 104:, 206–210. [CrossRef][PubMed]
    [Google Scholar]
  23. Ito K., Wittekind M., Nomura M., Shiba K., Yura T., Miura A., Nashimoto H.. ( 1983;). A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. . Cell 32:, 789–797. [CrossRef][PubMed]
    [Google Scholar]
  24. Jani A. J., Cotter P. A.. ( 2010;). Type VI secretion: not just for pathogenesis anymore. . Cell Host Microbe 8:, 2–6. [CrossRef][PubMed]
    [Google Scholar]
  25. Keith K. E., Hynes D. W., Sholdice J. E., Valvano M. A.. ( 2009;). Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. . Microbiology 155:, 1004–1015. [CrossRef][PubMed]
    [Google Scholar]
  26. Kooi C., Sokol P. A.. ( 2009;). Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. . Microbiology 155:, 2818–2825. [CrossRef][PubMed]
    [Google Scholar]
  27. Kooi C., Corbett C. R., Sokol P. A.. ( 2005;). Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. . J Bacteriol 187:, 4421–4429. [CrossRef][PubMed]
    [Google Scholar]
  28. Kooi C., Subsin B., Chen R., Pohorelic B., Sokol P. A.. ( 2006;). Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. . Infect Immun 74:, 4083–4093. [CrossRef][PubMed]
    [Google Scholar]
  29. Kozloff L. M., Turner M. A., Arellano F., Lute M.. ( 1991;). Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. . J Bacteriol 173:, 2053–2060.[PubMed]
    [Google Scholar]
  30. Lamothe J., Huynh K. K., Grinstein S., Valvano M. A.. ( 2007;). Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. . Cell Microbiol 9:, 40–53. [CrossRef][PubMed]
    [Google Scholar]
  31. Loutet S. A., Valvano M. A.. ( 2010;). A decade of Burkholderia cenocepacia virulence determinant research. . Infect Immun 78:, 4088–4100. [CrossRef][PubMed]
    [Google Scholar]
  32. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A.. ( 2006;). A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. . J Bacteriol 188:, 2073–2080. [CrossRef][PubMed]
    [Google Scholar]
  33. Loutet S. A., Bartholdson S. J., Govan J. R., Campopiano D. J., Valvano M. A.. ( 2009;). Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. . Microbiology 155:, 2029–2039. [CrossRef][PubMed]
    [Google Scholar]
  34. Mahenthiralingam E., Urban T. A., Goldberg J. B.. ( 2005;). The multifarious, multireplicon Burkholderia cepacia complex. . Nat Rev Microbiol 3:, 144–156. [CrossRef][PubMed]
    [Google Scholar]
  35. Maniatis T., Fritsch E. F., Sambrook J.. ( 1982;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  36. Marolda C. L., Lahiry P., Vinés E., Saldías S., Valvano M. A.. ( 2006;). Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. . Methods Mol Biol 347:, 237–252.[PubMed]
    [Google Scholar]
  37. Matsuhisa A., Suzuki N., Noda T., Shiba K.. ( 1995;). Inositol monophosphatase activity from the Escherichia coli suhB gene product. . J Bacteriol 177:, 200–205.[PubMed]
    [Google Scholar]
  38. Michell R. H.. ( 2011;). Inositol and its derivatives: their evolution and functions. . Adv Enzyme Regul 51:, 84–90. [CrossRef][PubMed]
    [Google Scholar]
  39. Miller V. L., Mekalanos J. J.. ( 1988;). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. . J Bacteriol 170:, 2575–2583.[PubMed]
    [Google Scholar]
  40. Movahedzadeh F., Wheeler P. R., Dinadayala P., Av-Gay Y., Parish T., Daffé M., Stoker N. G.. ( 2010;). Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis. . BMC Microbiol 10:, 50. [CrossRef][PubMed]
    [Google Scholar]
  41. Munnik T., Nielsen E.. ( 2011;). Green light for polyphosphoinositide signals in plants. . Curr Opin Plant Biol 14:, 489–497. [CrossRef][PubMed]
    [Google Scholar]
  42. Parish T., Liu J., Nikaido H., Stoker N. G.. ( 1997;). A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. . J Bacteriol 179:, 7827–7833.[PubMed]
    [Google Scholar]
  43. Paulus H., Kennedy E. P.. ( 1960;). The enzymatic synthesis of inositol monophosphatide. . J Biol Chem 235:, 1303–1311.[PubMed]
    [Google Scholar]
  44. Pukatzki S., McAuley S. B., Miyata S. T.. ( 2009;). The type VI secretion system: translocation of effectors and effector-domains. . Curr Opin Microbiol 12:, 11–17. [CrossRef][PubMed]
    [Google Scholar]
  45. Rosales-Reyes R., Skeldon A. M., Aubert D. F., Valvano M. A.. ( 2012;). The type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. . Cell Microbiol 14:, 255–273. [CrossRef][PubMed]
    [Google Scholar]
  46. Saldías M. S., Valvano M. A.. ( 2009;). Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. . Microbiology 155:, 2809–2817. [CrossRef][PubMed]
    [Google Scholar]
  47. Schmerk C. L., Bernards M. A., Valvano M. A.. ( 2011;). Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. . J Bacteriol 193:, 6712–6723. [CrossRef][PubMed]
    [Google Scholar]
  48. Shewan A., Eastburn D. J., Mostov K.. ( 2011;). Phosphoinositides in cell architecture. . Cold Spring Harb Perspect Biol 3:, a004796. [CrossRef][PubMed]
    [Google Scholar]
  49. Shiba K., Ito K., Yura T.. ( 1984a;). Mutation that suppresses the protein export defect of the secY mutation and causes cold-sensitive growth of Escherichia coli. . J Bacteriol 160:, 696–701.[PubMed]
    [Google Scholar]
  50. Shiba K., Ito K., Yura T., Cerretti D. P.. ( 1984b;). A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. . EMBO J 3:, 631–635.[PubMed]
    [Google Scholar]
  51. Shiba K., Ito K., Yura T.. ( 1986;). Suppressors of the secY24 mutation: identification and characterization of additional ssy genes in Escherichia coli. . J Bacteriol 166:, 849–856.[PubMed]
    [Google Scholar]
  52. Sokol P. A., Ohman D. E., Iglewski B. H.. ( 1979;). A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. . J Clin Microbiol 9:, 538–540.[PubMed]
    [Google Scholar]
  53. Wang Y., Stieglitz K. A., Bubunenko M., Court D. L., Stec B., Roberts M. F.. ( 2007;). The structure of the R184A mutant of the inositol monophosphatase encoded by suhB and implications for its functional interactions in Escherichia coli. . J Biol Chem 282:, 26989–26996. [CrossRef][PubMed]
    [Google Scholar]
  54. Waters V., Ratjen F.. ( 2006;). Multidrug-resistant organisms in cystic fibrosis: management and infection-control issues. . Expert Rev Anti Infect Ther 4:, 807–819. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060988-0
Loading
/content/journal/micro/10.1099/mic.0.060988-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error