1887

Abstract

We have developed a direct and efficient strategy, based on a three-step method, to select bacterial cell-envelope mutants resistant to bacteriophage infection. K-12 strain W3110 underwent classical transposon mutagenesis followed by replica plating and selection for mutants resistant to infection by coliphage mEp213. To verify that phage resistance was due to mutations in the cell envelope, we transformed host cells with the viral genome using electroporation and selected those in which virions were subsequently detected in the supernatant. Among the nine mutants resistant to coliphage infection that we selected, six were in the gene, two were mutated in the gene, and one was mutated in the gene. The latter two gene products are involved in the synthesis of lipopolysaccharide (LPS). The efficiency of plating and adsorption of phage mEp213 was affected in these mutants. We verified that LPS is required for the efficient infection of phage λ as well. We propose that this mutation-and-selection strategy can be used to find host factors involved in the initial steps of phage infection for any cognate pair of phage and bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060970-0
2012-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3063.html?itemId=/content/journal/micro/10.1099/mic.0.060970-0&mimeType=html&fmt=ahah

References

  1. Appleyard R. K. . ( 1954; ). Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. . Genetics 39:, 440–452.[PubMed]
    [Google Scholar]
  2. Bachmann B. J. . ( 1972; ). Pedigrees of some mutant strains of Escherichia coli K-12. . Bacteriol Rev 36:, 525–557.[PubMed]
    [Google Scholar]
  3. Böhm J. , Lambert O. , Frangakis A. S. , Letellier L. , Baumeister W. , Rigaud J. L. . ( 2001; ). FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. . Curr Biol 11:, 1168–1175.[PubMed] [CrossRef]
    [Google Scholar]
  4. Braun V. . ( 2009; ). FhuA (TonA), the career of a protein. . J Bacteriol 191:, 3431–3436. [CrossRef] [PubMed]
    [Google Scholar]
  5. Camprubí S. , Merino S. , Benedí V. J. , Tomás J. M. . ( 1991; ). Isolation and characterization of bacteriophage FC3-10 from Klebsiella spp. . FEMS Microbiol Lett 67:, 291–297. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carmel G. , Coulton J. W. . ( 1991; ). Internal deletions in the FhuA receptor of Escherichia coli K-12 define domains of ligand interactions. . J Bacteriol 173:, 4394–4403.[PubMed]
    [Google Scholar]
  7. Chang C. Y. , Kemp P. , Molineux I. J. . ( 2010; ). Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. . Virology 398:, 176–186. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chapman-McQuiston E. , Wu X. L. . ( 2008; ). Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part I: experiments. . Biophys J 94:, 4525–4536. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen L. , Coleman W. G. Jr . ( 1993; ). Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis. . J Bacteriol 175:, 2534–2540.[PubMed]
    [Google Scholar]
  10. Chen J. , Kriakov J. , Singh A. , Jacobs W. R. Jr , Besra G. S. , Bhatt A. . ( 2009; ). Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis . . Microbiology 155:, 4050–4057. [CrossRef] [PubMed]
    [Google Scholar]
  11. Coleman W. G. Jr . ( 1983; ). The rfaD gene codes for ADP-l-glycero-d-mannoheptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. . J Biol Chem 258:, 1985–1990.[PubMed]
    [Google Scholar]
  12. Coleman W. G. Jr , Deshpande K. S. . ( 1985; ). New cysE-pyrE-linked rfa mutation in Escherichia coli K-12 that results in a heptoseless lipopolysaccharide. . J Bacteriol 161:, 1209–1214.[PubMed]
    [Google Scholar]
  13. Dhillon E. K. , Dhillon T. S. . ( 1974; ). N-Methyl-N′-nitro-N-nitrosoguanidine and hydroxylamine induced mutants of the rII region of phage T4. . Mutat Res 22:, 223–233. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dreiseikelmann B. . ( 1994; ). Translocation of DNA across bacterial membranes. . Microbiol Rev 58:, 293–316.[PubMed]
    [Google Scholar]
  15. Esquinas-Rychen M. , Erni B. . ( 2001; ). Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate : carbohydrate phosphotransferase system (PTS). . J Mol Microbiol Biotechnol 3:, 361–370.[PubMed]
    [Google Scholar]
  16. Ferguson A. D. , Hofmann E. , Coulton J. W. , Diederichs K. , Welte W. . ( 1998; ). Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. . Science 282:, 2215–2220. [CrossRef] [PubMed]
    [Google Scholar]
  17. Garvey P. , Hill C. , Fitzgerald G. F. . ( 1996; ). The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. . Appl Environ Microbiol 62:, 676–679.[PubMed]
    [Google Scholar]
  18. Glaser-Wuttke G. , Keppner J. , Rasched I. . ( 1989; ). Pore-forming properties of the adsorption protein of filamentous phage fd. . Biochim Biophys Acta 985:, 239–247. [CrossRef] [PubMed]
    [Google Scholar]
  19. Goldberg E. , Grinius L. , Letellier L. . ( 1994; ). Recognition, attachment, and injection. . In Molecular Biology of Bacteriophage T4, pp. 347–356. Edited by Karam J. D. , Drake J. W. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Gronow S. , Brabetz W. , Brade H. . ( 2000; ). Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli . . Eur J Biochem 267:, 6602–6611. [CrossRef] [PubMed]
    [Google Scholar]
  21. Guglielmotti D. M. , Reinheimer J. A. , Binetti A. G. , Giraffa G. , Carminati D. , Quiberoni A. . ( 2006; ). Characterization of spontaneous phage-resistant derivatives of Lactobacillus delbrueckii commercial strains. . Int J Food Microbiol 111:, 126–133. [CrossRef] [PubMed]
    [Google Scholar]
  22. Guihard G. , Boulanger P. , Letellier L. . ( 1992; ). Involvement of phage T5 tail proteins and contact sites between the outer and inner membrane of Escherichia coli in phage T5 DNA injection. . J Biol Chem 267:, 3173–3178.[PubMed]
    [Google Scholar]
  23. Hanahan D. . ( 1983; ). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hanahan D. , Jessee J. , Bloom F. R. . ( 1991; ). Plasmid transformation of Escherichia coli and other bacteria. . Methods Enzymol 204:, 63–113. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hazelbauer G. L. . ( 1975; ). Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli . . J Bacteriol 124:, 119–126.[PubMed]
    [Google Scholar]
  26. Heinrichs D. E. , Yethon J. A. , Whitfield C. . ( 1998; ). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica . . Mol Microbiol 30:, 221–232. [CrossRef] [PubMed]
    [Google Scholar]
  27. Heller K. , Braun V. . ( 1979; ). Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. . J Bacteriol 139:, 32–38.[PubMed]
    [Google Scholar]
  28. Heller K. , Braun V. . ( 1982; ). Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. . J Virol 41:, 222–227.[PubMed]
    [Google Scholar]
  29. Hernández-Sánchez J. , Bautista-Santos A. , Fernández L. , Bermúdez-Cruz R. M. , Uc-Mass A. , Martínez-Peñafiel E. , Martínez M. A. , García-Mena J. , Guarneros G. , Kameyama L. . ( 2008; ). Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+, FhuA-dependent phages. . Arch Virol 153:, 1271–1280. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jensen K. F. . ( 1993; ). The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. . J Bacteriol 175:, 3401–3407.[PubMed]
    [Google Scholar]
  31. Joloba M. L. , Clemmer K. M. , Sledjeski D. D. , Rather P. N. . ( 2004; ). Activation of the gab operon in an RpoS-dependent manner by mutations that truncate the inner core of lipopolysaccharide in Escherichia coli . . J Bacteriol 186:, 8542–8546. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kadrmas J. L. , Raetz C. R. . ( 1998; ). Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase I. . J Biol Chem 273:, 2799–2807. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kameyama L. , Fernández L. , Calderón J. , Ortiz-Rojas A. , Patterson T. A. . ( 1999; ). Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a Nus-dependent, nonlambdoid phage group. . Virology 263:, 100–111. [CrossRef] [PubMed]
    [Google Scholar]
  34. Killmann H. , Videnov G. , Jung G. , Schwarz H. , Braun V. . ( 1995; ). Identification of receptor binding sites by competitive peptide mapping: phages T1, T5, and phi 80 and colicin M bind to the gating loop of FhuA. . J Bacteriol 177:, 694–698.[PubMed]
    [Google Scholar]
  35. Kleckner N. , Bender J. , Gottesman S. . ( 1991; ). Uses of transposons with emphasis on Tn10 . . Methods Enzymol 204:, 139–180. [CrossRef] [PubMed]
    [Google Scholar]
  36. Klena J. D. , Pradel E. , Schnaitman C. A. . ( 1992; ). Comparison of lipopolysaccharide biosynthesis genes rfaK, rfaL, rfaY, and rfaZ of Escherichia coli K-12 and Salmonella typhimurium . . J Bacteriol 174:, 4746–4752.[PubMed]
    [Google Scholar]
  37. Kneidinger B. , Marolda C. , Graninger M. , Zamyatina A. , McArthur F. , Kosma P. , Valvano M. A. , Messner P. . ( 2002; ). Biosynthesis pathway of ADP-l-glycero-β-d-manno-heptose in Escherichia coli . . J Bacteriol 184:, 363–369. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kwon Y. M. , Ricke S. C. . ( 2000; ). Efficient amplification of multiple transposon-flanking sequences. . J Microbiol Methods 41:, 195–199. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lederberg J. , Lederberg E. M. . ( 1952; ). Replica plating and indirect selection of bacterial mutants. . J Bacteriol 63:, 399–406.[PubMed]
    [Google Scholar]
  40. Lenski R. E. . ( 1984; ). Two-step resistance by Escherichia coli B to bacteriophage T2. . Genetics 107:, 1–7.[PubMed]
    [Google Scholar]
  41. Letellier L. , Plancon L. , Boulanger P. . ( 2007; ). Transfer of DNA from phage to host. . In Genetics and Molecular Biology, pp. 209–228. Edited by Mc Grath S. , van Sinderen D. . . Norfolk, UK:: Academic Press;.
    [Google Scholar]
  42. Martínez-Peñafiel E. , Fernández-Ramírez F. , Ishida C. , Reyes-Cortés R. , Sepúlveda-Robles O. , Guarneros-Peña G. , Bermúdez-Cruz R. M. , Kameyama L. . ( 2012; ). Overexpression of Ipe protein from the coliphage mEp021 induces pleiotropic effects involving haemolysis by HlyE-containing vesicles and cell death. . Biochimie 94:, 1262–1273. [CrossRef] [PubMed]
    [Google Scholar]
  43. Molineux I. J. . ( 2001; ). No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. . Mol Microbiol 40:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  44. Molineux I. J. . ( 2006; ). Fifty-three years since Hershey and Chase; much ado about pressure but which pressure is it?. Virology 344:, 221–229. [CrossRef] [PubMed]
    [Google Scholar]
  45. Nesper J. , Kapfhammer D. , Klose K. E. , Merkert H. , Reidl J. . ( 2000; ). Characterization of Vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis. . J Bacteriol 182:, 5097–5104. [CrossRef] [PubMed]
    [Google Scholar]
  46. Pajunen M. , Kiljunen S. , Skurnik M. . ( 2000; ). Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O : 3, is related to coliphages T3 and T7. . J Bacteriol 182:, 5114–5120. [CrossRef] [PubMed]
    [Google Scholar]
  47. Pegues J. C. , Chen L. S. , Gordon A. W. , Ding L. , Coleman W. G. Jr . ( 1990; ). Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene. . J Bacteriol 172:, 4652–4660.[PubMed]
    [Google Scholar]
  48. Polayes D. , Hughes A. J. Jr . ( 1994; ). Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. . Focus 16:, 81–84.
    [Google Scholar]
  49. Qimron U. , Marintcheva B. , Tabor S. , Richardson C. C. . ( 2006; ). Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. . Proc Natl Acad Sci U S A 103:, 19039–19044. [CrossRef] [PubMed]
    [Google Scholar]
  50. Roncero C. , Casadaban M. J. . ( 1992; ). Genetic analysis of the genes involved in synthesis of the lipopolysaccharide core in Escherichia coli K-12: three operons in the rfa locus. . J Bacteriol 174:, 3250–3260.[PubMed]
    [Google Scholar]
  51. Rossmann M. G. , Mesyanzhinov V. V. , Arisaka F. , Leiman P. G. . ( 2004; ). The bacteriophage T4 DNA injection machine. . Curr Opin Struct Biol 14:, 171–180. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sambrook J. , Russell D. W. . ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  53. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  54. Schirmer T. , Keller T. A. , Wang Y. F. , Rosenbusch J. P. . ( 1995; ). Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. . Science 267:, 512–514. [CrossRef] [PubMed]
    [Google Scholar]
  55. Silhavy T. J. , Berman M. L. , Enquist L. W. . ( 1984; ). Experiments with Gene Fusions. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  56. Silverman J. A. , Benson S. A. . ( 1987; ). Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. . J Bacteriol 169:, 4830–4833.[PubMed]
    [Google Scholar]
  57. Stevenson G. , Neal B. , Liu D. , Hobbs M. , Packer N. H. , Batley M. , Redmond J. W. , Lindquist L. , Reeves P. . ( 1994; ). Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. . J Bacteriol 176:, 4144–4156.[PubMed]
    [Google Scholar]
  58. Stoddard L. I. , Martiny J. B. , Marston M. F. . ( 2007; ). Selection and characterization of cyanophage resistance in marine Synechococcus strains. . Appl Environ Microbiol 73:, 5516–5522. [CrossRef] [PubMed]
    [Google Scholar]
  59. Sukupolvi S. . ( 1984; ). Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. . FEMS Microbiol Lett 21:, 83–87. [CrossRef]
    [Google Scholar]
  60. Uc-Mass A. , Loeza E. J. , de la Garza M. , Guarneros G. , Hernández-Sánchez J. , Kameyama L. . ( 2004; ). An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. . Virology 329:, 425–433. [CrossRef] [PubMed]
    [Google Scholar]
  61. Viscardi M. , Capparelli R. , Iannelli D. . ( 2003; ). Rapid selection of phage-resistant mutants in Streptococcus thermophilus by immunoselection and cell sorting. . Int J Food Microbiol 89:, 223–231. [CrossRef] [PubMed]
    [Google Scholar]
  62. Yu F. , Mizushima S. . ( 1982; ). Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. . J Bacteriol 151:, 718–722.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060970-0
Loading
/content/journal/micro/10.1099/mic.0.060970-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error