1887

Abstract

Enteropathogenic (EPEC) causes diarrhoea among infants in developing countries. The bundle-forming pilus (BFP), a type IV pilus found on the surface of EPEC, is essential for full virulence of typical EPEC strains. The machinery for BFP assembly and function is encoded by an operon of 14 genes. Here we investigate the role in pilus biogenesis of BfpL, a small protein with a single N-terminal predicted transmembrane domain reminiscent of pilin-like proteins. We confirmed that a mutant lacks BFP, and associated auto-aggregation and localized adherence phenotypes. Furthermore, we found that a double mutant unable to express both the putative retraction ATPase BfpF and BfpL also lacks BFP and associated phenotypes, distinguishing BfpL from pilin-like proteins. Western blots of sheared pilus preparations did not suggest that BfpL is a component of BFP. Topology studies using C-terminal truncations and a dual reporter revealed that most of the BfpL protein resides in the periplasm. Further, we demonstrated through yeast two-hybrid assays and confirmed by fluorescence anisotropy that BfpL interacts with the periplasmic face of BfpC. Thus, BfpL has a function distinct from those of pilin-like proteins and is instead part of an inner-membrane subassembly complex that is believed to extract bundlin, the main pilus subunit, from the inner membrane to be incorporated into BFP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060889-0
2012-10-01
2020-02-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2515.html?itemId=/content/journal/micro/10.1099/mic.0.060889-0&mimeType=html&fmt=ahah

References

  1. Abendroth J., Bagdasarian M., Sandkvist M., Hol W. G.. ( 2004a;). The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J Mol Biol344:619–633 [CrossRef][PubMed]
    [Google Scholar]
  2. Abendroth J., Rice A. E., McLuskey K., Bagdasarian M., Hol W. G.. ( 2004b;). The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol338:585–596 [CrossRef][PubMed]
    [Google Scholar]
  3. Abendroth J., Murphy P., Sandkvist M., Bagdasarian M., Hol W. G.. ( 2005;). The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol348:845–855 [CrossRef][PubMed]
    [Google Scholar]
  4. Alexeyev M. F., Winkler H. H.. ( 1999;). Membrane topology of the Rickettsia prowazekii ATP/ADP translocase revealed by novel dual pho-lac reporters. J Mol Biol285:1503–1513 [CrossRef][PubMed]
    [Google Scholar]
  5. Anantha R. P., Stone K. D., Donnenberg M. S.. ( 1998;). Role of BfpF, a member of the PilT family of putative nucleotide-binding proteins, in type IV pilus biogenesis and in interactions between enteropathogenic Escherichia coli and host cells. Infect Immun66:122–131[PubMed]
    [Google Scholar]
  6. Anantha R. P., Stone K. D., Donnenberg M. S.. ( 2000;). Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol182:2498–2506 [CrossRef][PubMed]
    [Google Scholar]
  7. Ayers M., Sampaleanu L. M., Tammam S., Koo J., Harvey H., Howell P. L., Burrows L. L.. ( 2009;). PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol394:128–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Bieber D., Ramer S. W., Wu C. Y., Murray W. J., Tobe T., Fernandez R., Schoolnik G. K.. ( 1998;). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science280:2114–2118 [CrossRef][PubMed]
    [Google Scholar]
  9. Blank T. E., Donnenberg M. S.. ( 2001;). Novel topology of BfpE, a cytoplasmic membrane protein required for type IV fimbrial biogenesis in enteropathogenic Escherichia coli. J Bacteriol183:4435–4450 [CrossRef][PubMed]
    [Google Scholar]
  10. Brown D. R., Helaine S., Carbonnelle E., Pelicic V.. ( 2010;). Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis. Infect Immun78:3053–3063 [CrossRef][PubMed]
    [Google Scholar]
  11. Carbonnelle E., Helaine S., Nassif X., Pelicic V.. ( 2006;). A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol61:1510–1522 [CrossRef][PubMed]
    [Google Scholar]
  12. Clontech Laboratories, Inc. ( 2009;). Yeast Protocols Handbook Mountain View, CA: Clontech Laboratories;
    [Google Scholar]
  13. Craig L., Pique M. E., Tainer J. A.. ( 2004;). Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol2:363–378 [CrossRef][PubMed]
    [Google Scholar]
  14. Crowther L. J., Anantha R. P., Donnenberg M. S.. ( 2004;). The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol52:67–69 [CrossRef][PubMed]
    [Google Scholar]
  15. Daniel A., Singh A., Crowther L. J., Fernandes P. J., Schreiber W., Donnenberg M. S.. ( 2006;). Interaction and localization studies of enteropathogenic Escherichia coli type IV bundle-forming pilus outer membrane components. Microbiology152:2405–2420 [CrossRef][PubMed]
    [Google Scholar]
  16. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  17. Donnenberg M. S.. ( 2002;). Enteropathogenic Escherichia coli. Infections of the Gastrointestinal Tract, 2nd edn.595–612 Blaser M. J., Smith P. D., Ravdin J. I., Greenberg H. B., Guerrant R. L.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  18. Donnenberg M. S., Nataro J. P.. ( 1995;). Methods for studying adhesion of diarrheagenic Escherichia coli. Methods Enzymol253:324–336 [CrossRef][PubMed]
    [Google Scholar]
  19. Donnenberg M. S., Girón J. A., Nataro J. P., Kaper J. B.. ( 1992;). A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol6:3427–3437 [CrossRef][PubMed]
    [Google Scholar]
  20. Fernandes P. J., Guo Q., Donnenberg M. S.. ( 2007;). Functional consequences of sequence variation in bundlin, the enteropathogenic Escherichia coli type IV pilin protein. Infect Immun75:4687–4696 [CrossRef][PubMed]
    [Google Scholar]
  21. Fröls S., Ajon M., Wagner M., Teichmann D., Zolghadr B., Folea M., Boekema E. J., Driessen A. J., Schleper C., Albers S. V.. ( 2008;). UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol70:938–952 [CrossRef][PubMed]
    [Google Scholar]
  22. Giltner C. L., Habash M., Burrows L. L.. ( 2010;). Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Mol Biol398:444–461 [CrossRef][PubMed]
    [Google Scholar]
  23. Gray M. D., Bagdasarian M., Hol W. G., Sandkvist M.. ( 2011;). In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol Microbiol79:786–798 [CrossRef][PubMed]
    [Google Scholar]
  24. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  25. Helaine S., Dyer D. H., Nassif X., Pelicic V., Forest K. T.. ( 2007;). 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc Natl Acad Sci U S A104:15888–15893 [CrossRef][PubMed]
    [Google Scholar]
  26. Karuppiah V., Derrick J. P.. ( 2011;). Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem286:24434–24442 [CrossRef][PubMed]
    [Google Scholar]
  27. LeTilly V., Royer C. A.. ( 1993;). Fluorescence anisotropy assays implicate protein–protein interactions in regulating trp repressor DNA binding. Biochemistry32:7753–7758 [CrossRef][PubMed]
    [Google Scholar]
  28. Levine M. M., Bergquist E. J., Nalin D. R., Waterman D. H., Hornick R. B., Young C. R., Sotman S., Rowe B.. ( 1978;). Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet311:1119–1122 [CrossRef][PubMed]
    [Google Scholar]
  29. Lundblad J. R., Laurance M., Goodman R. H.. ( 1996;). Fluorescence polarization analysis of protein-DNA and protein-protein interactions. Mol Endocrinol10:607–612 [CrossRef][PubMed]
    [Google Scholar]
  30. Milgotina E. I., Lieberman J. A., Donnenberg M. S.. ( 2011;). Corrigendum – The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol81:1125–1127 [CrossRef][PubMed]
    [Google Scholar]
  31. Morand P. C., Bille E., Morelle S., Eugène E., Beretti J. L., Wolfgang M., Meyer T. F., Koomey M., Nassif X.. ( 2004;). Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. EMBO J23:2009–2017 [CrossRef][PubMed]
    [Google Scholar]
  32. Ng S. Y., Wu J., Nair D. B., Logan S. M., Robotham A., Tessier L., Kelly J. F., Uchida K., Aizawa S., Jarrell K. F.. ( 2011;). Genetic and mass spectrometry analyses of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J Bacteriol193:804–814 [CrossRef][PubMed]
    [Google Scholar]
  33. Pelicic V.. ( 2008;). Type IV pili: e pluribus unum?. Mol Microbiol68:827–837 [CrossRef][PubMed]
    [Google Scholar]
  34. Proft T., Baker E. N.. ( 2009;). Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci66:613–635 [CrossRef][PubMed]
    [Google Scholar]
  35. Ramboarina S., Fernandes P. J., Daniell S., Islam S., Simpson P., Frankel G., Booy F., Donnenberg M. S., Matthews S.. ( 2005;). Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J Biol Chem280:40252–40260 [CrossRef][PubMed]
    [Google Scholar]
  36. Ramer S. W., Bieber D., Schoolnik G. K.. ( 1996;). BfpB, an outer membrane lipoprotein required for the biogenesis of bundle-forming pili in enteropathogenic Escherichia coli. J Bacteriol178:6555–6563[PubMed]
    [Google Scholar]
  37. Ramer S. W., Schoolnik G. K., Wu C. Y., Hwang J., Schmidt S. A., Bieber D.. ( 2002;). The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli. J Bacteriol184:3457–3465 [CrossRef][PubMed]
    [Google Scholar]
  38. Saiman L., Prince A.. ( 1993;). Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest92:1875–1880 [CrossRef][PubMed]
    [Google Scholar]
  39. Sampaleanu L. M., Bonanno J. B., Ayers M., Koo J., Tammam S., Burley S. K., Almo S. C., Burrows L. L., Howell P. L.. ( 2009;). Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol394:143–159 [CrossRef][PubMed]
    [Google Scholar]
  40. Sandkvist M., Bagdasarian M., Howard S. P., DiRita V. J.. ( 1995;). Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J14:1664–1673[PubMed]
    [Google Scholar]
  41. Sandkvist M., Keith J. M., Bagdasarian M., Howard S. P.. ( 2000;). Two regions of EpsL involved in species-specific protein-protein interactions with EpsE and EpsM of the general secretion pathway in Vibrio cholerae. J Bacteriol182:742–748 [CrossRef][PubMed]
    [Google Scholar]
  42. Schreiber W., Stone K. D., Strong M. A., DeTolla L. J. Jr, Hoppert M., Donnenberg M. S.. ( 2002;). BfpU, a soluble protein essential for type IV pilus biogenesis in enteropathogenic Escherichia coli. Microbiology148:2507–2518[PubMed]
    [Google Scholar]
  43. Sohel I., Puente J. L., Ramer S. W., Bieber D., Wu C.-Y., Schoolnik G. K.. ( 1996;). Enteropathogenic Escherichia coli: identification of a gene cluster coding for bundle-forming pilus morphogenesis. J Bacteriol178:2613–2628[PubMed]
    [Google Scholar]
  44. Stone B. J., Abu Kwaik Y.. ( 1998;). Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun66:1768–1775[PubMed]
    [Google Scholar]
  45. Stone K. D., Zhang H.-Z., Carlson L. K., Donnenberg M. S.. ( 1996;). A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol20:325–337 [CrossRef][PubMed]
    [Google Scholar]
  46. Tacket C. O., Taylor R. K., Losonsky G., Lim Y., Nataro J. P., Kaper J. B., Levine M. M.. ( 1998;). Investigation of the roles of toxin-coregulated pili and mannose-sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae O139 infection. Infect Immun66:692–695[PubMed]
    [Google Scholar]
  47. Taha M. K., Morand P. C., Pereira Y., Eugène E., Giorgini D., Larribe M., Nassif X.. ( 1998;). Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol Microbiol28:1153–1163 [CrossRef][PubMed]
    [Google Scholar]
  48. Tusnády G. E., Simon I.. ( 2001;). The HMMTOP transmembrane topology prediction server. Bioinformatics17:849–850 [CrossRef][PubMed]
    [Google Scholar]
  49. von Heijne G.. ( 1986;). The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J5:3021–3027[PubMed]
    [Google Scholar]
  50. Winther-Larsen H. C., Wolfgang M., Dunham S., van Putten J. P., Dorward D., Løvold C., Aas F. E., Koomey M.. ( 2005;). A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol Microbiol56:903–917 [CrossRef][PubMed]
    [Google Scholar]
  51. Wolfgang M., Lauer P., Park H. S., Brossay L., Hébert J., Koomey M.. ( 1998;). PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol29:321–330 [CrossRef][PubMed]
    [Google Scholar]
  52. Yamagata A., Milgotina E., Scanlon K., Craig L., Tainer J. A., Donnenberg M. S.. ( 2012;). Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems. J Mol Biol419:110–124 [CrossRef][PubMed]
    [Google Scholar]
  53. Zahavi E. E., Lieberman J. A., Donnenberg M. S., Nitzan M., Baruch K., Rosenshine I., Turner J. R., Melamed-Book N., Feinstein N.. & other authors ( 2011;). Bundle-forming pilus retraction enhances enteropathogenic Escherichia coli infectivity. Mol Biol Cell22:2436–2447 [CrossRef][PubMed]
    [Google Scholar]
  54. Zhang H.-Z., Lory S., Donnenberg M. S.. ( 1994;). A plasmid-encoded prepilin peptidase gene from enteropathogenic Escherichia coli. J Bacteriol176:6885–6891[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060889-0
Loading
/content/journal/micro/10.1099/mic.0.060889-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error