1887

Abstract

Bacterial adaptation to environmental conditions is essential to ensure maximal fitness in the face of several stresses. In this context, two-component systems (TCSs) represent a predominant signal transduction mechanism, allowing an appropriate response to be mounted when a stimulus is sensed. As facultative intracellular pathogens, spp. face various environmental conditions, and an adequate response is required for a successful infection process. Recently, bioinformatic analysis of genomes predicted a set of 15 bona fide TCS pairs, among which some have been previously investigated. In this report, we characterized a new TCS locus called /, for probable proline sensor–regulator. It encodes a hybrid histidine kinase (PrlS) with an unusual Na/solute symporter N-terminal domain and a transcriptional regulator (belonging to the LuxR family) (PrlR). , spp. with a functional PrlR/S system form bacterial aggregates, which seems to be an adaptive response to a hypersaline environment, while a / mutant does not. We identified ionic strength as a possible signal sensed by this TCS. Finally, this work correlates the absence of a functional PrlR/S system with the lack of hypersaline-induced aggregation in particular marine spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060863-0
2012-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2642.html?itemId=/content/journal/micro/10.1099/mic.0.060863-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1991;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  2. Bellefontaine A.-F., Pierreux C. E., Mertens P., Vandenhaute J., Letesson J. J., De Bolle X.. ( 2002;). Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. . Mol Microbiol 43:, 945–960. [CrossRef][PubMed]
    [Google Scholar]
  3. Buddle M. B.. ( 1956;). Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. . J Hyg (Lond) 54:, 351–364. [CrossRef][PubMed]
    [Google Scholar]
  4. Buelow D. R., Raivio T. L.. ( 2010;). Three (and more) component regulatory systems – auxiliary regulators of bacterial histidine kinases. . Mol Microbiol 75:, 547–566. [CrossRef][PubMed]
    [Google Scholar]
  5. Carmichael L. E., Bruner D. W.. ( 1968;). Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. . Cornell Vet 48:, 579–592.[PubMed]
    [Google Scholar]
  6. Carrica M. C., Fernandez I., Martí M. A., Paris G., Goldbaum F. A.. ( 2012;). The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. . Mol Microbiol 85:, 39–50. [CrossRef][PubMed]
    [Google Scholar]
  7. Cloeckaert A., de Wergifosse P., Dubray G., Limet J. N.. ( 1990;). Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. . Infect Immun 58:, 3980–3987.[PubMed]
    [Google Scholar]
  8. Delrue R. M., Martinez-Lorenzo M., Lestrate P., Danese I., Bielarz V., Mertens P., De Bolle X., Tibor A., Gorvel J. P., Letesson J. J.. ( 2001;). Identification of Brucella spp. genes involved in intracellular trafficking. . Cell Microbiol 3:, 487–497. [CrossRef][PubMed]
    [Google Scholar]
  9. Delrue R. M., Deschamps C., Léonard S., Nijskens C., Danese I., Schaus J. M., Bonnot S., Ferooz J., Tibor A.. & other authors ( 2005;). A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. . Cell Microbiol 7:, 1151–1161. [CrossRef][PubMed]
    [Google Scholar]
  10. Denoel P. A., Vo T. K., Weynants V. E., Tibor A., Gilson D., Zygmunt M. S., Limet J. N., Letesson J. J.. ( 1997;). Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. . J Med Microbiol 46:, 801–806. [CrossRef][PubMed]
    [Google Scholar]
  11. Dorrell N., Spencer S., Foulonge V., Guigue-Talet P., O’Callaghan D., Wren B. W.. ( 1998;). Identification, cloning and initial characterisation of FeuPQ in Brucella suis: a new sub-family of two-component regulatory systems. . FEMS Microbiol Lett 162:, 143–150. [CrossRef][PubMed]
    [Google Scholar]
  12. Dorrell N., Guigue-Talet P., Spencer S., Foulonge V., O’Callaghan D., Wren B. W.. ( 1999;). Investigation into the role of the response regulator NtrC in the metabolism and virulence of Brucella suis. . Microb Pathog 27:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  13. Dricot A., Rual J. F., Lamesch P., Bertin N., Dupuy D., Hao T., Lambert C., Hallez R., Delroisse J. M.. & other authors ( 2004;). Generation of the Brucella melitensis ORFeome version 1.1. . Genome Res 14: (10B), 2201–2206. [CrossRef][PubMed]
    [Google Scholar]
  14. Foster G., Osterman B. S., Godfroid J., Jacques I., Cloeckaert A.. ( 2007;). Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. . Int J Syst Evol Microbiol 57:, 2688–2693. [CrossRef][PubMed]
    [Google Scholar]
  15. Foulongne V., Bourg G., Cazevieille C., Michaux-Charachon S., O’Callaghan D.. ( 2000;). Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. . Infect Immun 68:, 1297–1303. [CrossRef][PubMed]
    [Google Scholar]
  16. Fretin D., Fauconnier A., Köhler S., Halling S., Léonard S., Nijskens C., Ferooz J., Lestrate P., Delrue R. M.. & other authors ( 2005;). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. . Cell Microbiol 7:, 687–698. [CrossRef][PubMed]
    [Google Scholar]
  17. Galperin M. Y.. ( 2010;). Diversity of structure and function of response regulator output domains. . Curr Opin Microbiol 13:, 150–159. [CrossRef][PubMed]
    [Google Scholar]
  18. Godefroid M., Svensson M. V., Cambier P., Uzureau S., Mirabella A., De Bolle X., Van Cutsem P., Widmalm G., Letesson J.-J.. ( 2010;). Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm. . FEMS Immunol Med Microbiol 59:, 364–377.[PubMed]
    [Google Scholar]
  19. Gorvel J. P., Moreno E.. ( 2002;). Brucella intracellular life: from invasion to intracellular replication. . Vet Microbiol 90:, 281–297. [CrossRef][PubMed]
    [Google Scholar]
  20. Groussaud P., Shankster S. J., Koylass M. S., Whatmore A. M.. ( 2007;). Molecular typing divides marine mammal strains of Brucella into at least three groups with distinct host preferences. . J Med Microbiol 56:, 1512–1518. [CrossRef][PubMed]
    [Google Scholar]
  21. Hallez R., Mignolet J., Van Mullem V., Wery M., Vandenhaute J., Letesson J. J., Jacobs-Wagner C., De Bolle X.. ( 2007;). The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. . EMBO J 26:, 1444–1455. [CrossRef][PubMed]
    [Google Scholar]
  22. Iibuchi R., Hara-Kudo Y., Hasegawa A., Kumagai S.. ( 2010;). Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. . J Food Prot 73:, 1506–1510.[PubMed]
    [Google Scholar]
  23. Jacobs C., Domian I. J., Maddock J. R., Shapiro L.. ( 1999;). Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. . Cell 97:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  24. Jung H.. ( 1998;). Topology and function of the Na+/proline transporter of Escherichia coli, a member of the Na+/solute cotransporter family. . Biochim Biophys Acta 1365:, 60–64. [CrossRef][PubMed]
    [Google Scholar]
  25. Jung H.. ( 2001;). Towards the molecular mechanism of Na+/solute symport in prokaryotes. . Biochim Biophys Acta 1505:, 131–143. [CrossRef][PubMed]
    [Google Scholar]
  26. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R.. ( 2004;). Systematic mutagenesis of the Escherichia coli genome. . J Bacteriol 186:, 4921–4930. [CrossRef][PubMed]
    [Google Scholar]
  27. Karatan E., Watnick P.. ( 2009;). Signals, regulatory networks, and materials that build and break bacterial biofilms. . Microbiol Mol Biol Rev 73:, 310–347. [CrossRef][PubMed]
    [Google Scholar]
  28. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M.. ( 1994;). pBBR1MCS: a broad-host-range cloning vector. . Biotechniques 16:, 800–802.[PubMed]
    [Google Scholar]
  29. Krämer R.. ( 2010;). Bacterial stimulus perception and signal transduction: response to osmotic stress. . Chem Rec 10:, 217–229. [CrossRef][PubMed]
    [Google Scholar]
  30. Kung C., Martinac B., Sukharev S.. ( 2010;). Mechanosensitive channels in microbes. . Annu Rev Microbiol 64:, 313–329. [CrossRef][PubMed]
    [Google Scholar]
  31. Kunte H. J., Crane R. A., Culham D. E., Richmond D., Wood J. M.. ( 1999;). Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. . J Bacteriol 181:, 1537–1543.[PubMed]
    [Google Scholar]
  32. Laub M. T., Biondi E. G., Skerker J. M.. ( 2007;). Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. . Methods Enzymol 423:, 531–548. [CrossRef][PubMed]
    [Google Scholar]
  33. Lavín J. L., Binnewies T. T., Pisabarro A. G., Ussery D. W., García-Lobo J. M., Oguiza J. A.. ( 2010;). Differences in two-component signal transduction proteins among the genus Brucella: implications for host preference and pathogenesis. . Vet Microbiol 144:, 478–483. [CrossRef][PubMed]
    [Google Scholar]
  34. Léonard S., Ferooz J., Haine V., Danese I., Fretin D., Tibor A., de Walque S., De Bolle X., Letesson J. J.. ( 2007;). FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. . J Bacteriol 189:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  35. Lestrate P., Delrue R. M., Danese I., Didembourg C., Taminiau B., Mertens P., De Bolle X., Tibor A., Tang C. M., Letesson J. J.. ( 2000;). Identification and characterization of in vivo attenuated mutants of Brucella melitensis. . Mol Microbiol 38:, 543–551. [CrossRef][PubMed]
    [Google Scholar]
  36. Letesson J. J., De Bolle X.. ( 2004;). Brucella virulence: a matter of control. . In Brucella Molecular and Cellular Biology, pp. 113–151. Edited by Lopez-Goni I., Moriyon I... Pamplona, Spain:: Universidad de Navarra;.
    [Google Scholar]
  37. Letesson J. J., Lestrate P., Delrue R. M., Danese I., Bellefontaine F., Fretin D., Taminiau B., Tibor A., Dricot A.. & other authors ( 2002;). Fun stories about Brucella: the “furtive nasty bug”. . Vet Microbiol 90:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  38. Levina N., Tötemeyer S., Stokes N. R., Louis P., Jones M. A., Booth I. R.. ( 1999;). Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. . EMBO J 18:, 1730–1737. [CrossRef][PubMed]
    [Google Scholar]
  39. Mascher T., Helmann J. D., Unden G.. ( 2006;). Stimulus perception in bacterial signal-transducing histidine kinases. . Microbiol Mol Biol Rev 70:, 910–938. [CrossRef][PubMed]
    [Google Scholar]
  40. Mignolet J., Van der Henst C., Nicolas C., Deghelt M., Dotreppe D., Letesson J. J., De Bolle X.. ( 2010;). PdhS, an old-pole-localized histidine kinase, recruits the fumarase FumC in Brucella abortus. . J Bacteriol 192:, 3235–3239. [CrossRef][PubMed]
    [Google Scholar]
  41. Miller K. J., Wood J. M.. ( 1996;). Osmoadaptation by rhizosphere bacteria. . Annu Rev Microbiol 50:, 101–136. [CrossRef][PubMed]
    [Google Scholar]
  42. Mitrophanov A. Y., Groisman E. A.. ( 2008;). Signal integration in bacterial two-component regulatory systems. . Genes Dev 22:, 2601–2611. [CrossRef][PubMed]
    [Google Scholar]
  43. Moe P. C., Blount P., Kung C.. ( 1998;). Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. . Mol Microbiol 28:, 583–592. [CrossRef][PubMed]
    [Google Scholar]
  44. Moreno E., Moriyon I.. ( 2002;). Brucella melitensis: a nasty bug with hidden credentials for virulence. . Proc Natl Acad Sci U S A 99:, 1–3. [CrossRef][PubMed]
    [Google Scholar]
  45. Morgan W. J., Corbel M. J.. ( 1976;). Recommendations for the description of species and biotypes of the genus Brucella. . Dev Biol Stand 31:, 27–37.[PubMed]
    [Google Scholar]
  46. Parkinson J. S.. ( 1993;). Signal transduction schemes of bacteria. . Cell 73:, 857–871. [CrossRef][PubMed]
    [Google Scholar]
  47. Perraud A. L., Weiss V., Gross R.. ( 1999;). Signalling pathways in two-component phosphorelay systems. . Trends Microbiol 7:, 115–120. [CrossRef][PubMed]
    [Google Scholar]
  48. Pirch T., Landmeier S., Jung H.. ( 2003;). Transmembrane domain II of the Na+/proline transporter PutP of Escherichia coli forms part of a conformationally flexible, cytoplasmic exposed aqueous cavity within the membrane. . J Biol Chem 278:, 42942–42949. [CrossRef][PubMed]
    [Google Scholar]
  49. Racher K. I., Voegele R. T., Marshall E. V., Culham D. E., Wood J. M., Jung H., Bacon M., Cairns M. T., Ferguson S. M.. & other authors ( 1999;). Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. . Biochemistry 38:, 1676–1684. [CrossRef][PubMed]
    [Google Scholar]
  50. Sangari F., Agüero J.. ( 1991;). Mutagenesis of Brucella abortus: comparative efficiency of three transposon delivery systems. . Microb Pathog 11:, 443–446. [CrossRef][PubMed]
    [Google Scholar]
  51. Scholz H. C., Hubalek Z., Sedlácek I., Vergnaud G., Tomaso H., Al Dahouk S., Melzer F., Kämpfer P., Neubauer H.. & other authors ( 2008;). Brucella microti sp. nov., isolated from the common vole Microtus arvalis. . Int J Syst Evol Microbiol 58:, 375–382. [CrossRef][PubMed]
    [Google Scholar]
  52. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Nat Biotechnol 1:, 784–791. [CrossRef]
    [Google Scholar]
  53. Sola-Landa A., Pizarro-Cerdá J., Grilló M. J., Moreno E., Moriyón I., Blasco J. M., Gorvel J. P., López-Goñi I.. ( 1998;). A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. . Mol Microbiol 29:, 125–138. [CrossRef][PubMed]
    [Google Scholar]
  54. Stoenner H. G., Lackman D. B.. ( 1957;). A preliminary report on a Brucella isolated from the desert wood rat, Neotoma lepida Thomas. . J Am Vet Med Assoc 130:, 411–412.[PubMed]
    [Google Scholar]
  55. Swartz T. E., Tseng T. S., Frederickson M. A., Paris G., Comerci D. J., Rajashekara G., Kim J. G., Mudgett M. B., Splitter G. A.. & other authors ( 2007;). Blue-light-activated histidine kinases: two-component sensors in bacteria. . Science 317:, 1090–1093. [CrossRef][PubMed]
    [Google Scholar]
  56. Uzureau S., Godefroid M., Deschamps C., Lemaire J., De Bolle X., Letesson J. J.. ( 2007;). Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. . J Bacteriol 189:, 6035–6047. [CrossRef][PubMed]
    [Google Scholar]
  57. Wegener C., Tebbe S., Steinhoff H. J., Jung H.. ( 2000;). Spin labeling analysis of structure and dynamics of the Na+/proline transporter of Escherichia coli. . Biochemistry 39:, 4831–4837. [CrossRef][PubMed]
    [Google Scholar]
  58. Wood J. M.. ( 2006;). Osmosensing by bacteria. . Sci STKE 2006:, pe43. [CrossRef][PubMed]
    [Google Scholar]
  59. Wood J. M.. ( 2007;). Bacterial osmosensing transporters. . Methods Enzymol 428:, 77–107. [CrossRef][PubMed]
    [Google Scholar]
  60. Wu Q., Pei J., Turse C., Ficht T. A.. ( 2006;). Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. . BMC Microbiol 6:, 102. [CrossRef][PubMed]
    [Google Scholar]
  61. Zhang X., Ren J., Li N., Liu W., Wu Q.. ( 2009;). Disruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance. . Int J Biol Sci 5:, 570–577. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060863-0
Loading
/content/journal/micro/10.1099/mic.0.060863-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error