1887

Abstract

Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including . Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of . We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by extracellular proteins. Taken together, these results indicate that is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060855-0
2012-12-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2903.html?itemId=/content/journal/micro/10.1099/mic.0.060855-0&mimeType=html&fmt=ahah

References

  1. Ahn S. J., Ahn S. J., Wen Z. T., Brady L. J., Burne R. A.. ( 2008;). Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun76:4259–4268 [CrossRef][PubMed]
    [Google Scholar]
  2. Alteri C. J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J. A., Friedman R. L.. ( 2007;). Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A104:5145–5150 [CrossRef][PubMed]
    [Google Scholar]
  3. Ayakawa G. Y., Boushell L. W., Crowley P. J., Erdos G. W., McArthur W. P., Bleiweis A. S.. ( 1987;). Isolation and characterization of monoclonal antibodies specific for antigen P1, a major surface protein of mutans streptococci. Infect Immun55:2759–2767[PubMed]
    [Google Scholar]
  4. Barnhart M. M., Chapman M. R.. ( 2006;). Curli biogenesis and function. Annu Rev Microbiol60:131–147 [CrossRef][PubMed]
    [Google Scholar]
  5. Beg A. M., Jones M. N., Miller-Torbert T., Holt R. G.. ( 2002;). Binding of Streptococcus mutans to extracellular matrix molecules and fibrinogen. Biochem Biophys Res Commun298:75–79 [CrossRef][PubMed]
    [Google Scholar]
  6. Bieler S., Estrada L., Lagos R., Baeza M., Castilla J., Soto C.. ( 2005;). Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem280:26880–26885 [CrossRef][PubMed]
    [Google Scholar]
  7. Bouvet A., van de Rijn I., McCarty M.. ( 1981;). Nutritionally variant streptococci from patients with endocarditis: growth parameters in a semisynthetic medium and demonstration of a chromophore. J Bacteriol146:1075–1082[PubMed]
    [Google Scholar]
  8. Brady L. J., Crowley P. J., Ma J. K., Kelly C., Lee S. F., Lehner T., Bleiweis A. S.. ( 1991;). Restriction fragment length polymorphisms and sequence variation within the spaP gene of Streptococcus mutans serotype c isolates. Infect Immun59:1803–1810[PubMed]
    [Google Scholar]
  9. Brady L. J., Cvitkovitch D. G., Geric C. M., Addison M. N., Joyce J. C., Crowley P. J., Bleiweis A. S.. ( 1998;). Deletion of the central proline-rich repeat domain results in altered antigenicity and lack of surface expression of the Streptococcus mutans P1 adhesin molecule. Infect Immun66:4274–4282[PubMed]
    [Google Scholar]
  10. Brady L. J., Maddocks S. E., Larson M. R., Forsgren N., Persson K., Deivanayagam C. C., Jenkinson H. F.. ( 2010;). The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol77:276–286 [CrossRef][PubMed]
    [Google Scholar]
  11. Broxmeyer L.. ( 2002;). Parkinson’s: another look. Med Hypotheses59:373–377 [CrossRef][PubMed]
    [Google Scholar]
  12. Burne R. A., Ahn S. J., Wen Z. T., Zeng L., Lemos J. A., Abranches J., Nascimento M.. ( 2009;). Opportunities for disrupting cariogenic biofilms. Adv Dent Res21:17–20 [CrossRef][PubMed]
    [Google Scholar]
  13. Butko P., Buford J. P., Goodwin J. S., Stroud P. A., McCormick C. L., Cannon G. C.. ( 2001;). Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3. Biochem Biophys Res Commun280:212–215 [CrossRef][PubMed]
    [Google Scholar]
  14. Cegelski L., Pinkner J. S., Hammer N. D., Cusumano C. K., Hung C. S., Chorell E., Aberg V., Walker J. N., Seed P. C.. & other authors ( 2009;). Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol5:913–919 [CrossRef][PubMed]
    [Google Scholar]
  15. Chapman M. R., Robinson L. S., Pinkner J. S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S. J.. ( 2002;). Role of Escherichia coli curli operons in directing amyloid fiber formation. Science295:851–855 [CrossRef][PubMed]
    [Google Scholar]
  16. Chernoff Y. O.. ( 2004;). Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition?. Curr Opin Chem Biol8:665–671 [CrossRef][PubMed]
    [Google Scholar]
  17. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersma F. G., Dijkhuizen L., Wosten H. A.. ( 2003;). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev17:1714–1726 [CrossRef][PubMed]
    [Google Scholar]
  18. Crowley P. J., Brady L. J., Michalek S. M., Bleiweis A. S.. ( 1999;). Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. Infect Immun67:1201–1206[PubMed]
    [Google Scholar]
  19. DaSilva K. A., Shaw J. E., McLaurin J.. ( 2010;). Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol223:311–321 [CrossRef][PubMed]
    [Google Scholar]
  20. de Jong W., Wösten H. A., Dijkhuizen L., Claessen D.. ( 2009;). Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol73:1128–1140 [CrossRef][PubMed]
    [Google Scholar]
  21. de Vocht M. L., Reviakine I., Wösten H. A., Brisson A., Wessels J. G., Robillard G. T.. ( 2000;). Structural and functional role of the disulfide bridges in the hydrophobin SC3. J Biol Chem275:28428–28432 [CrossRef][PubMed]
    [Google Scholar]
  22. Díaz-Corrales F. J., Colasante C., Contreras Q., Puig M., Serrano J. A., Hernández L., Beaman B. L.. ( 2004;). Nocardia otitidiscaviarum (GAM-5) induces parkinsonian-like alterations in mouse. Braz J Med Biol Res37:539–548 [CrossRef][PubMed]
    [Google Scholar]
  23. Dueholm M. S., Petersen S. V., Sønderkær M., Larsen P., Christiansen G., Hein K. L., Enghild J. J., Nielsen J. L., Nielsen K. L.. & other authors ( 2010;). Functional amyloid in Pseudomonas. Mol Microbiol77:1009–1020[PubMed]
    [Google Scholar]
  24. Ehrnhoefer D. E., Bieschke J., Boeddrich A., Herbst M., Masino L., Lurz R., Engemann S., Pastore A., Wanker E. E.. ( 2008;). EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol15:558–566 [CrossRef][PubMed]
    [Google Scholar]
  25. Ellefsen B., Holm-Pedersen P., Morse D. E., Schroll M., Andersen B. B., Waldemar G.. ( 2008;). Caries prevalence in older persons with and without dementia. J Am Geriatr Soc56:59–67 [CrossRef][PubMed]
    [Google Scholar]
  26. Epstein E. A., Chapman M. R.. ( 2008;). Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell Microbiol10:1413–1420 [CrossRef][PubMed]
    [Google Scholar]
  27. Epstein E. A., Reizian M. A., Chapman M. R.. ( 2009;). Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol191:608–615 [CrossRef][PubMed]
    [Google Scholar]
  28. Fowler D. M., Koulov A. V., Balch W. E., Kelly J. W.. ( 2007;). Functional amyloid – from bacteria to humans. Trends Biochem Sci32:217–224 [CrossRef][PubMed]
    [Google Scholar]
  29. Garcia M. C., Lee J. T., Ramsook C. B., Alsteens D., Dufrêne Y. F., Lipke P. N.. ( 2011;). A role for amyloid in cell aggregation and biofilm formation. PLoS ONE6:e17632 [CrossRef][PubMed]
    [Google Scholar]
  30. Gebbink M. F., Claessen D., Bouma B., Dijkhuizen L., Wösten H. A.. ( 2005;). Amyloids – a functional coat for microorganisms. Nat Rev Microbiol3:333–341 [CrossRef][PubMed]
    [Google Scholar]
  31. Grelle G., Otto A., Lorenz M., Frank R. F., Wanker E. E., Bieschke J.. ( 2011;). Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry50:10624–10636 [CrossRef][PubMed]
    [Google Scholar]
  32. Hammer N. D., Schmidt J. C., Chapman M. R.. ( 2007;). The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A104:12494–12499 [CrossRef][PubMed]
    [Google Scholar]
  33. Harper J. D., Lansbury P. T. Jr. ( 1997;). Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem66:385–407 [CrossRef][PubMed]
    [Google Scholar]
  34. Heiser V., Scherzinger E., Boeddrich A., Nordhoff E., Lurz R., Schugardt N., Lehrach H., Wanker E. E.. ( 2000;). Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci U S A97:6739–6744 [CrossRef][PubMed]
    [Google Scholar]
  35. Hett E. C., Hung D. T.. ( 2009;). Targeting multiple biofilm pathways. Chem Biol16:1216–1218 [CrossRef][PubMed]
    [Google Scholar]
  36. Howie A. J., Brewer D. B., Howell D., Jones A. P.. ( 2008;). Physical basis of colors seen in Congo red-stained amyloid in polarized light. Lab Invest88:232–242 [CrossRef][PubMed]
    [Google Scholar]
  37. Jenkinson H. F., Demuth D. R.. ( 1997;). Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol23:183–190 [CrossRef][PubMed]
    [Google Scholar]
  38. Jin L. W., Claborn K. A., Kurimoto M., Geday M. A., Maezawa I., Sohraby F., Estrada M., Kaminksy W., Kahr B.. ( 2003;). Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proc Natl Acad Sci U S A100:15294–15298 [CrossRef][PubMed]
    [Google Scholar]
  39. Klunk W. E., Jacob R. F., Mason R. P.. ( 1999;). Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo red-Abeta (CR-abeta) spectrophotometric assay. Anal Biochem266:66–76 [CrossRef][PubMed]
    [Google Scholar]
  40. Koga T., Asakawa H., Okahashi N., Hamada S.. ( 1986;). Sucrose-dependent cell adherence and cariogenicity of serotype c Streptococcus mutans. J Gen Microbiol132:2873–2883[PubMed]
    [Google Scholar]
  41. Kolodkin-Gal I., Romero D., Cao S., Clardy J., Kolter R., Losick R.. ( 2010;). d-Amino acids trigger biofilm disassembly. Science328:627–629 [CrossRef][PubMed]
    [Google Scholar]
  42. Kuner P., Bohrmann B., Tjernberg L. O., Näslund J., Huber G., Celenk S., Grüninger-Leitch F., Richards J. G., Jakob-Roetne R.. & other authors ( 2000;). Controlling polymerization of beta-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem275:1673–1678 [CrossRef][PubMed]
    [Google Scholar]
  43. Kwan A. H., Winefield R. D., Sunde M., Matthews J. M., Haverkamp R. G., Templeton M. D., Mackay J. P.. ( 2006;). Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A103:3621–3626 [CrossRef][PubMed]
    [Google Scholar]
  44. Lam H., Oh D. C., Cava F., Takacs C. N., Clardy J., de Pedro M. A., Waldor M. K.. ( 2009;). d-Amino acids govern stationary phase cell wall remodeling in bacteria. Science325:1552–1555 [CrossRef][PubMed]
    [Google Scholar]
  45. Lamont R. J., El-Sabaeny A., Park Y., Cook G. S., Costerton J. W., Demuth D. R.. ( 2002;). Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology148:1627–1636[PubMed]
    [Google Scholar]
  46. Larsen P., Nielsen J. L., Dueholm M. S., Wetzel R., Otzen D., Nielsen P. H.. ( 2007;). Amyloid adhesins are abundant in natural biofilms. Environ Microbiol9:3077–3090 [CrossRef][PubMed]
    [Google Scholar]
  47. Larsen P., Nielsen J. L., Otzen D., Nielsen P. H.. ( 2008;). Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol74:1517–1526 [CrossRef][PubMed]
    [Google Scholar]
  48. Larson M. R., Rajashankar K. R., Patel M. H., Robinette R. A., Crowley P. J., Michalek S., Brady L. J., Deivanayagam C.. ( 2010;). Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of alpha- and PPII-helices. Proc Natl Acad Sci U S A107:5983–5988 [CrossRef][PubMed]
    [Google Scholar]
  49. Larson M. R., Rajashankar K. R., Crowley P. J., Kelly C., Mitchell T. J., Brady L. J., Deivanayagam C.. ( 2011;). Crystal structure of the C-terminal region of Streptococcus mutans antigen I/II and characterization of salivary agglutinin adherence domains. J Biol Chem286:21657–21666 [CrossRef][PubMed]
    [Google Scholar]
  50. Lee S. F., Progulske-Fox A., Erdos G. W., Piacentini D. A., Ayakawa G. Y., Crowley P. J., Bleiweis A. S.. ( 1989;). Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun57:3306–3313[PubMed]
    [Google Scholar]
  51. Lopez del Amo J. M., Fink U., Dasari M., Grelle G., Wanker E. E., Bieschke J., Reif B.. ( 2012;). Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers. J Mol Biol421:517–524 [CrossRef][PubMed]
    [Google Scholar]
  52. Lundmark K., Westermark G. T., Nyström S., Murphy C. L., Solomon A., Westermark P.. ( 2002;). Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci U S A99:6979–6984 [CrossRef][PubMed]
    [Google Scholar]
  53. Lundmark K., Westermark G. T., Olsén A., Westermark P.. ( 2005;). Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci U S A102:6098–6102 [CrossRef][PubMed]
    [Google Scholar]
  54. MacDonald A. B.. ( 2006;). Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med Hypotheses67:592–600 [CrossRef][PubMed]
    [Google Scholar]
  55. Mackay J. P., Matthews J. M., Winefield R. D., Mackay L. G., Haverkamp R. G., Templeton M. D.. ( 2001;). The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure9:83–91 [CrossRef][PubMed]
    [Google Scholar]
  56. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B.. ( 1982;). A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene19:345–353 [CrossRef][PubMed]
    [Google Scholar]
  57. Maury C. P.. ( 2009a;). The emerging concept of functional amyloid. J Intern Med265:329–334 [CrossRef][PubMed]
    [Google Scholar]
  58. Maury C. P.. ( 2009b;). Self-propagating β-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig Life Evol Biosph39:141–150 [CrossRef][PubMed]
    [Google Scholar]
  59. McArthur W. P., Rhodin N. R., Seifert T. B., Oli M. W., Robinette R. A., Demuth D. R., Brady L. J.. ( 2007;). Characterization of epitopes recognized by anti-Streptococcus mutans P1 monoclonal antibodies. FEMS Immunol Med Microbiol50:342–353 [CrossRef][PubMed]
    [Google Scholar]
  60. Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R., Reiss K., Darbinian N., Darekar P., Mihaly L.. ( 2006;). Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging27:228–236 [CrossRef][PubMed]
    [Google Scholar]
  61. Necula M., Kayed R., Milton S., Glabe C. G.. ( 2007;). Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem282:10311–10324 [CrossRef][PubMed]
    [Google Scholar]
  62. Nilsson M. R.. ( 2004;). Techniques to study amyloid fibril formation in vitro. Methods34:151–160 [CrossRef][PubMed]
    [Google Scholar]
  63. Nobbs A. H., Vajna R. M., Johnson J. R., Zhang Y., Erlandsen S. L., Oli M. W., Kreth J., Brady L. J., Herzberg M. C.. ( 2007;). Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology153:4088–4097 [CrossRef][PubMed]
    [Google Scholar]
  64. Nobbs A. H., Lamont R. J., Jenkinson H. F.. ( 2009;). Streptococcus adherence and colonization. Microbiol Mol Biol Rev73:407–450 [CrossRef][PubMed]
    [Google Scholar]
  65. Nylander A., Forsgren N., Persson K.. ( 2011;). Structure of the C-terminal domain of the surface antigen SpaP from the caries pathogen Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun67:23–26 [CrossRef][PubMed]
    [Google Scholar]
  66. Otoo H. N., Lee K. G., Qiu W., Lipke P. N.. ( 2008;). Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell7:776–782 [CrossRef][PubMed]
    [Google Scholar]
  67. Otzen D., Nielsen P. H.. ( 2008;). We find them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci65:910–927 [CrossRef][PubMed]
    [Google Scholar]
  68. Palmer S. R., Crowley P. J., Oli M. W., Ruelf M. A., Michalek S. M., Brady L. J.. ( 2012;). YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans. Microbiology158:1702–1712 [CrossRef][PubMed]
    [Google Scholar]
  69. Porat Y., Abramowitz A., Gazit E.. ( 2006;). Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des67:27–37 [CrossRef][PubMed]
    [Google Scholar]
  70. Ramsook C. B., Tan C., Garcia M. C., Fung R., Soybelman G., Henry R., Litewka A., O’Meally S., Otoo H. N.. & other authors ( 2010;). Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell9:393–404 [CrossRef][PubMed]
    [Google Scholar]
  71. Rauceo J. M., Gaur N. K., Lee K. G., Edwards J. E., Klotz S. A., Lipke P. N.. ( 2004;). Global cell surface conformational shift mediated by a Candida albicans adhesin. Infect Immun72:4948–4955 [CrossRef][PubMed]
    [Google Scholar]
  72. Robinette R. A., Oli M. W., McArthur W. P., Brady L. J.. ( 2011;). A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine29:6292–6300 [CrossRef][PubMed]
    [Google Scholar]
  73. Romero D., Aguilar C., Losick R., Kolter R.. ( 2010;). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A107:2230–2234 [CrossRef][PubMed]
    [Google Scholar]
  74. Romero D., Vlamakis H., Losick R., Kolter R.. ( 2011;). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol80:1155–1168 [CrossRef][PubMed]
    [Google Scholar]
  75. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S.. ( 1998;). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol180:722–731[PubMed]
    [Google Scholar]
  76. Saldaña Z., Xicohtencatl-Cortes J., Avelino F., Phillips A. D., Kaper J. B., Puente J. L., Girón J. A.. ( 2009;). Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol11:992–1006 [CrossRef][PubMed]
    [Google Scholar]
  77. Sato T., Hu J. P., Ohki K., Yamaura M., Washio J., Matsuyama J., Takahashi N.. ( 2003;). Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes. Oral Microbiol Immunol18:323–326 [CrossRef][PubMed]
    [Google Scholar]
  78. Sawyer E. B., Claessen D., Haas M., Hurgobin B., Gras S. L.. ( 2011;). The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS ONE6:e18839 [CrossRef][PubMed]
    [Google Scholar]
  79. Schaeken M. J., van der Hoeven J. S., Franken H. C.. ( 1986;). Comparative recovery of Streptococcus mutans on five isolation media, including a new simple selective medium. J Dent Res65:906–908 [CrossRef][PubMed]
    [Google Scholar]
  80. Schwartz K., Syed A. K., Stephenson R. E., Rickard A. H., Boles B. R.. ( 2012;). Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog8:e1002744 [CrossRef][PubMed]
    [Google Scholar]
  81. Sharp A., Crabb S. J., Johnson P. W., Hague A., Cutress R., Townsend P. A., Ganesan A., Packham G.. ( 2009;). Thioflavin S (NSC71948) interferes with Bcl-2-associated athanogene (BAG-1)-mediated protein–protein interactions. J Pharmacol Exp Ther331:680–689 [CrossRef][PubMed]
    [Google Scholar]
  82. Shewmaker F., McGlinchey R. P., Thurber K. R., McPhie P., Dyda F., Tycko R., Wickner R. B.. ( 2009;). The functional curli amyloid is not based on in-register parallel β-sheet structure. J Biol Chem284:25065–25076 [CrossRef][PubMed]
    [Google Scholar]
  83. Smith J. F., Knowles T. P., Dobson C. M., Macphee C. E., Welland M. E.. ( 2006;). Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci U S A103:15806–15811 [CrossRef][PubMed]
    [Google Scholar]
  84. Takahashi N., Nyvad B.. ( 2008;). Caries ecology revisited: microbial dynamics and the caries process. Caries Res42:409–418 [CrossRef][PubMed]
    [Google Scholar]
  85. Ton-That H., Marraffini L. A., Schneewind O.. ( 2004;). Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta1694:269–278 [CrossRef][PubMed]
    [Google Scholar]
  86. Troffer-Charlier N., Ogier J., Moras D., Cavarelli J.. ( 2002;). Crystal structure of the V-region of Streptococcus mutans antigen I/II at 2.4 Å resolution suggests a sugar preformed binding site. J Mol Biol318:179–188 [CrossRef][PubMed]
    [Google Scholar]
  87. Wang X., Chapman M. R.. ( 2008;). Sequence determinants of bacterial amyloid formation. J Mol Biol380:570–580 [CrossRef][PubMed]
    [Google Scholar]
  88. Zhou Y., Blanco L. P., Smith D. R., Chapman M. R.. ( 2012;). Bacterial amyloids. Methods Mol Biol849:303–320 [CrossRef][PubMed]
    [Google Scholar]
  89. Zogaj X., Bokranz W., Nimtz M., Römling U.. ( 2003;). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun71:4151–4158 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060855-0
Loading
/content/journal/micro/10.1099/mic.0.060855-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error