1887

Abstract

Clustered, regularly interspaced, short palindromic repeats (CRISPRs) are implicated in defence against foreign DNA in various archaeal and bacterial species. They have also been associated with a slower spread of antibiotic resistance. However, experimental and evolutionary studies raise doubts about the role of CRISPRs as a sort of immune system in . We studied a collection of 263 natural isolates from human and animal hosts, representative of the phylogenetic and lifestyle diversity of the species and exhibiting various levels of plasmid-encoded antibiotic resistance. We characterized the strains in terms of CRISPRs, performed replicon typing of the plasmids and tested for class 1 integrons to explore the possible association between CRISPRs and the absence of plasmids and mobile antibiotic resistance determinants. We found no meaningful association between the presence/absence of the genes, reflecting the activity of the CRISPRs, and the presence of plasmids, integrons or antibiotic resistance. No CRISPR in the collection contained a spacer that matched an antibiotic resistance gene or element involved in antibiotic resistance gene mobilization, and 79.8 % (210/263) of the strains lacked spacers matching sequences in the 2282 plasmid genomes available. Hence, CRISPRs do not seem to be efficient barriers to the spread of plasmids and antibiotic resistance, consistent with what has been reported for phages, and contrary to reports concerning other species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060814-0
2012-12-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2997.html?itemId=/content/journal/micro/10.1099/mic.0.060814-0&mimeType=html&fmt=ahah

References

  1. Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., Gagarinova A., Pogoutse O., Brown G.. & other authors ( 2011;). A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. . Mol Microbiol 79:, 484–502. [CrossRef][PubMed]
    [Google Scholar]
  2. Bengtsson S., Naseer U., Sundsfjord A., Kahlmeter G., Sundqvist M.. ( 2012;). Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. . J Antimicrob Chemother 67:, 69–73. [CrossRef][PubMed]
    [Google Scholar]
  3. Boyd E. F., Hill C. W., Rich S. M., Hartl D. L.. ( 1996;). Mosaic structure of plasmids from natural populations of Escherichia coli. . Genetics 143:, 1091–1100.[PubMed]
    [Google Scholar]
  4. Branger C., Bruneau B., Lesimple A. L., Bouvet P. J., Berry P., Sevali-Garcia J., Lambert-Zechovsky N.. ( 1997;). Epidemiological typing of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. . J Hosp Infect 36:, 23–36. [CrossRef][PubMed]
    [Google Scholar]
  5. Branger C., Zamfir O., Geoffroy S., Laurans G., Arlet G., Thien H. V., Gouriou S., Picard B., Denamur E.. ( 2005;). Genetic background of Escherichia coli and extended-spectrum β-lactamase type. . Emerg Infect Dis 11:, 54–61. [CrossRef][PubMed]
    [Google Scholar]
  6. Carattoli A.. ( 2009;). Resistance plasmid families in Enterobacteriaceae. . Antimicrob Agents Chemother 53:, 2227–2238. [CrossRef][PubMed]
    [Google Scholar]
  7. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J.. ( 2005;). Identification of plasmids by PCR-based replicon typing. . J Microbiol Methods 63:, 219–228. [CrossRef][PubMed]
    [Google Scholar]
  8. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. . Appl Environ Microbiol 66:, 4555–4558. [CrossRef][PubMed]
    [Google Scholar]
  9. Clermont O., Gordon D. M., Brisse S., Walk S. T., Denamur E.. ( 2011a;). Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. . Environ Microbiol 13:, 2468–2477. [CrossRef][PubMed]
    [Google Scholar]
  10. Clermont O., Olier M., Hoede C., Diancourt L., Brisse S., Keroudean M., Glodt J., Picard B., Oswald E., Denamur E.. ( 2011b;). Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. . Infect Genet Evol 11:, 654–662. [CrossRef][PubMed]
    [Google Scholar]
  11. Delaney N. F., Balenger S., Bonneaud C., Marx C. J., Hill G. E., Ferguson-Noel N., Tsai P., Rodrigo A., Edwards S. V.. ( 2012;). Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. . PLoS Genet 8:, e1002511. [CrossRef][PubMed]
    [Google Scholar]
  12. Delannoy S., Beutin L., Burgos Y., Fach P.. ( 2012;). Specific detection of enteroaggregative hemorrhagic Escherichia coli O104 : H4 strains using the CRISPR locus as target for a diagnostic real-time PCR. . J Clin Microbiol 50:, 3485–3492. [CrossRef][PubMed]
    [Google Scholar]
  13. Díez-Villaseñor C., Almendros C., García-Martínez J., Mojica F. J.. ( 2010;). Diversity of CRISPR loci in Escherichia coli. . Microbiology 156:, 1351–1361. [CrossRef][PubMed]
    [Google Scholar]
  14. Edgar R., Qimron U.. ( 2010;). The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. . J Bacteriol 192:, 6291–6294. [CrossRef][PubMed]
    [Google Scholar]
  15. Greenacre M.. ( 1992;). Correspondence analysis in medical research. . Stat Methods Med Res 1:, 97–117. [CrossRef][PubMed]
    [Google Scholar]
  16. Horvath P., Barrangou R.. ( 2010;). CRISPR/Cas, the immune system of bacteria and archaea. . Science 327:, 167–170. [CrossRef][PubMed]
    [Google Scholar]
  17. Jaureguy F., Landraud L., Passet V., Diancourt L., Frapy E., Guigon G., Carbonnelle E., Lortholary O., Clermont O.. & other authors ( 2008;). Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. . BMC Genomics 9:, 560. [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson T. J., Wannemuehler Y. M., Johnson S. J., Logue C. M., White D. G., Doetkott C., Nolan L. K.. ( 2007;). Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. . Appl Environ Microbiol 73:, 1976–1983. [CrossRef][PubMed]
    [Google Scholar]
  19. Kuno S., Yoshida T., Kaneko T., Sako Y.. ( 2012;). Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures. . Appl Environ Microbiol 78:, 5353–5360. [CrossRef][PubMed]
    [Google Scholar]
  20. Kutter E.. ( 2009;). Phage host range and efficiency of plating. . Methods Mol Biol 501:, 141–149. [CrossRef][PubMed]
    [Google Scholar]
  21. Lefort A., Panhard X., Clermont O., Woerther P. L., Branger C., Mentré F., Fantin B., Wolff M., Denamur E..COLIBAFI Group ( 2011;). Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. . J Clin Microbiol 49:, 777–783. [CrossRef][PubMed]
    [Google Scholar]
  22. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J., Charpentier E., Horvath P., Moineau S., Mojica F. J., Wolf Y. I.. & other authors ( 2011;). Evolution and classification of the CRISPR–Cas systems. . Nat Rev Microbiol 9:, 467–477. [CrossRef][PubMed]
    [Google Scholar]
  23. Marcadé G., Deschamps C., Boyd A., Gautier V., Picard B., Branger C., Denamur E., Arlet G.. ( 2009;). Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. . J Antimicrob Chemother 63:, 67–71. [CrossRef][PubMed]
    [Google Scholar]
  24. Mazel D.. ( 2006;). Integrons: agents of bacterial evolution. . Nat Rev Microbiol 4:, 608–620. [CrossRef][PubMed]
    [Google Scholar]
  25. Moissenet D., Salauze B., Clermont O., Bingen E., Arlet G., Denamur E., Mérens A., Mitanchez D., Vu-Thien H.. ( 2010;). Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum β-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. . J Clin Microbiol 48:, 2459–2463. [CrossRef][PubMed]
    [Google Scholar]
  26. Palmer K. L., Gilmore M. S.. ( 2010;). Multidrug-resistant enterococci lack CRISPR-cas. . MBio 1:, e00227-10. [CrossRef][PubMed]
    [Google Scholar]
  27. Perez-Rodriguez R., Haitjema C., Huang Q., Nam K. H., Bernardis S., Ke A., DeLisa M. P.. ( 2011;). Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. . Mol Microbiol 79:, 584–599. [CrossRef][PubMed]
    [Google Scholar]
  28. Picard B., Garcia J. S., Gouriou S., Duriez P., Brahimi N., Bingen E., Elion J., Denamur E.. ( 1999;). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. . Infect Immun 67:, 546–553.[PubMed]
    [Google Scholar]
  29. Ploy M. C., Denis F., Courvalin P., Lambert T.. ( 2000;). Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. . Antimicrob Agents Chemother 44:, 2684–2688. [CrossRef][PubMed]
    [Google Scholar]
  30. Pougach K., Semenova E., Bogdanova E., Datsenko K. A., Djordjevic M., Wanner B. L., Severinov K.. ( 2010;). Transcription, processing and function of CRISPR cassettes in Escherichia coli. . Mol Microbiol 77:, 1367–1379. [CrossRef][PubMed]
    [Google Scholar]
  31. Pul Ü., Wurm R., Arslan Z., Geißen R., Hofmann N., Wagner R.. ( 2010;). Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. . Mol Microbiol 75:, 1495–1512. [CrossRef][PubMed]
    [Google Scholar]
  32. Sapranauskas R., Gasiunas G., Fremaux C., Barrangou R., Horvath P., Siksnys V.. ( 2011;). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. . Nucleic Acids Res 39:, 9275–9282. [CrossRef][PubMed]
    [Google Scholar]
  33. Skurnik D., Le Menac’h A., Zurakowski D., Mazel D., Courvalin P., Denamur E., Andremont A., Ruimy R.. ( 2005;). Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. . Antimicrob Agents Chemother 49:, 3062–3065. [CrossRef][PubMed]
    [Google Scholar]
  34. Skurnik D., Ruimy R., Andremont A., Amorin C., Rouquet P., Picard B., Denamur E.. ( 2006;). Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. . J Antimicrob Chemother 57:, 1215–1219. [CrossRef][PubMed]
    [Google Scholar]
  35. Sorek R., Kunin V., Hugenholtz P.. ( 2008;). CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. . Nat Rev Microbiol 6:, 181–186. [CrossRef][PubMed]
    [Google Scholar]
  36. Takeuchi N., Wolf Y. I., Makarova K. S., Koonin E. V.. ( 2012;). Nature and intensity of selection pressure on CRISPR-associated genes. . J Bacteriol 194:, 1216–1225. [CrossRef][PubMed]
    [Google Scholar]
  37. Tenaillon O., Skurnik D., Picard B., Denamur E.. ( 2010;). The population genetics of commensal Escherichia coli. . Nat Rev Microbiol 8:, 207–217. [CrossRef][PubMed]
    [Google Scholar]
  38. Touchon M., Rocha E. P.. ( 2010;). The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. . PLoS ONE 5:, e11126. [CrossRef][PubMed]
    [Google Scholar]
  39. Touchon M., Charpentier S., Clermont O., Rocha E. P., Denamur E., Branger C.. ( 2011;). CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. . J Bacteriol 193:, 2460–2467. [CrossRef][PubMed]
    [Google Scholar]
  40. Toukdarian A.. ( 2004;). Plasmid strategies for broad-host-range replication in Gram-negative bacteria. . In Plasmid Biology, pp. 259–270. Edited by Funnell B. E., Phillips G. J... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  41. Tyson G. W., Banfield J. F.. ( 2008;). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. . Environ Microbiol 10:, 200–207.[PubMed]
    [Google Scholar]
  42. Westra E. R., Pul U., Heidrich N., Jore M. M., Lundgren M., Stratmann T., Wurm R., Raine A., Mescher M.. & other authors ( 2010;). H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. . Mol Microbiol 77:, 1380–1393. [CrossRef][PubMed]
    [Google Scholar]
  43. Wiedenheft B., Sternberg S. H., Doudna J. A.. ( 2012;). RNA-guided genetic silencing systems in bacteria and archaea. . Nature 482:, 331–338. [CrossRef][PubMed]
    [Google Scholar]
  44. Yosef I., Goren M. G., Kiro R., Edgar R., Qimron U.. ( 2011;). High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. . Proc Natl Acad Sci U S A 108:, 20136–20141. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060814-0
Loading
/content/journal/micro/10.1099/mic.0.060814-0
Loading

Data & Media loading...

Supplements

Supplementary data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error