1887

Abstract

has been classified into four groupings (groups I to IV) based on physiological characteristics and 16S rRNA sequencing. We have examined the lipid compositions of 11 representative strains of and a strain of by 2D-TLC and by MS. All strains contained phosphatidylglycerol (PG), cardiolipin (CL) and phosphatidylethanolamine (PE) in both the all-acyl and the alk-1′-enyl (plasmalogen) forms. Five strains in proteolytic group I, which are related to , contained varying amounts of an ethanolamine-phosphate derivative of -acetylglucosaminyl-diradylglycerol, which is also present in . Three strains in group II, which are related to , , contained lipids characteristic of these saccharolytic species: a glycerol acetal and a PG acetal of the plasmalogen form of PE. Two group III strains, which are related to , contained amino-acyl derivatives of PG, which are also found in . A strain in group IV had PE, PG and CL, but none of the distinguishing lipids. This work shows that the lipidome of . is consistent with its classification by other methods.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060707-0
2012-10-01
2020-05-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2577.html?itemId=/content/journal/micro/10.1099/mic.0.060707-0&mimeType=html&fmt=ahah

References

  1. Barash J. R., Arnon S. S.. ( 2004;). Dual toxin-producing strain of Clostridium botulinum type Bf isolated from a California patient with infant botulism. J Clin Microbiol42:1713–1715 [CrossRef][PubMed]
    [Google Scholar]
  2. Baumann N. A., Hagen P.-O., Goldfine H.. ( 1965;). Phospholipids of Clostridium butyricum: studies on plasmalogen composition and biosynthesis. J Biol Chem240:1559–1567[PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., East A. K.. ( 1998;). Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol84:5–17 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  6. Evans R. I., McClure P. J., Gould G. W., Russell N. J.. ( 1998;). The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum . Int J Food Microbiol40:159–167 [CrossRef][PubMed]
    [Google Scholar]
  7. Franciosa G., Ferreira J. L., Hatheway C. L.. ( 1994;). Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J Clin Microbiol32:1911–1917[PubMed]
    [Google Scholar]
  8. Gimenez D. F., Gimenez J. A.. ( 1993;). Serological subtypes of botulinal neurotoxins. Botulinum and Tetanus Neurotoxins421–431 DasGupta B. R.. New York: Plenum Press;
    [Google Scholar]
  9. Goldfine H.. ( 1982;). Lipids of procaryotes – structure and distribution. Current Topics Membr Transp17:1–43 [CrossRef]
    [Google Scholar]
  10. Goldfine H.. ( 2010a;). Membrane biogenesis. Hydrocarbons, Oils and Lipids: Diversity, Properties and Formation417–424 Timmis K. N.. Berlin: Springer;
    [Google Scholar]
  11. Goldfine H.. ( 2010b;). The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res49:498[CrossRef]
    [Google Scholar]
  12. Goldfine H., Johnston N. C.. ( 2005;). Membrane lipids of clostridia. Handbook on Clostridia297–310 Dürre P.. Boca Raton, FL: Taylor & Francis; [CrossRef]
    [Google Scholar]
  13. Goldfine H., Johnston N. C., Mattai J., Shipley G. G.. ( 1987;). Regulation of bilayer stability in Clostridium butyricum: studies on the polymorphic phase behavior of the ether lipids. Biochemistry26:2814–2822 [CrossRef][PubMed]
    [Google Scholar]
  14. Guan Z., Johnston N. C., Aygun-Sunar S., Daldal F., Raetz C. R., Goldfine H.. ( 2011;). Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochim Biophys Acta1811:186–193 [CrossRef]
    [Google Scholar]
  15. Hatheway C. L.. ( 1990;). Toxigenic clostridia. Clin Microbiol Rev3:66–98[PubMed]
    [Google Scholar]
  16. Hatheway C. L.. ( 1995;). Botulism: the present status of the disease. Curr Top Microbiol Immunol195:55–75 [CrossRef][PubMed]
    [Google Scholar]
  17. Hatheway C. L., Johnson E. A.. 1998; Clostridium: the spore-bearing anaerobes. Topley and Wilson’s Microbiology and Microbial Infections731–782 Coller L., Balows A., Sussman M.. London: Arnold;
    [Google Scholar]
  18. Hill K. K., Smith T. J., Helma C. H., Ticknor L. O., Foley B. T., Svensson R. T., Brown J. L., Johnson E. A., Smith L. A., Okinaka R. T., Jackson P. J., Marks J. D.. 2007; Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol189:818–832 [CrossRef]
    [Google Scholar]
  19. Hodgkiss W., Ordal Z. J., Cann D. C.. ( 1967;). The morphology and ultrastructure of the spore and exosporium of some Clostridium species. J Gen Microbiol47:213–225 [CrossRef][PubMed]
    [Google Scholar]
  20. Hutson R. A., Thompson D. E., Collins M. D.. ( 1993a;). Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol Lett108:103–110 [CrossRef][PubMed]
    [Google Scholar]
  21. Hutson R. A., Thompson D. E., Lawson P. A., Schockenitturino R. P., Bottger E. C., Collins M. D.. ( 1993b;). Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology64:273–283 [CrossRef]
    [Google Scholar]
  22. Johnson J. L., Francis B. S.. ( 1975;). Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol88:229–244 [CrossRef][PubMed]
    [Google Scholar]
  23. Johnston N. C., Goldfine H.. ( 1983;). Lipid composition in the classification of the butyric acid-producing clostridia. J Gen Microbiol129:1075–1081[PubMed]
    [Google Scholar]
  24. Johnston N. C., Goldfine H.. ( 1988;). Isolation and characterization of a novel four chain phospholipid, the phosphatidylglycerol acetal of plasmenylethanolamine from Clostridium butyricum . Biochim Biophys Acta961:1–12 [CrossRef][PubMed]
    [Google Scholar]
  25. Johnston N. C., Goldfine H.. ( 1992;). Replacement of the aliphatic chains of Clostridium acetobutylicum by exogenous fatty acids: regulation of phospholipid and glycolipid composition. J Bacteriol174:1848–1853[PubMed]
    [Google Scholar]
  26. Johnston N. C., Aygun-Sunar S., Guan Z., Ribeiro A. A., Daldal F., Raetz C. R., Goldfine H.. ( 2010;). A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani . J Lipid Res51:1953–1961 [CrossRef][PubMed]
    [Google Scholar]
  27. Jones D. T., Woods D. R.. ( 1986;). Acetone-butanol fermentation revisited. Microbiol Rev50:484–524[PubMed]
    [Google Scholar]
  28. Kates M.. ( 1972;). Ether-linked lipids in extemely halophilic bacteria. Ether Lipids: Chemistry and Biology351–398 Snyder F.. New York: Academic Press;
    [Google Scholar]
  29. Kates M.. ( 1986;). Techniques of Lipidology. Isolation, Analysis and Identification of Lipids, 2nd Edn. Amsterdam: North-Holland Publishing Company;
    [Google Scholar]
  30. Keis S., Shaheen R., Jones D. T.. ( 2001;). Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov.. Int J Syst Evol Microbiol51:2095–2103 [CrossRef][PubMed]
    [Google Scholar]
  31. Khuller G. K., Goldfine H.. ( 1974;). Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition. J Lipid Res15:500–507[PubMed]
    [Google Scholar]
  32. MacDonald D. L., Goldfine H.. ( 1990;). Phosphatidylglycerol acetal of plasmenylethanolamine as an intermediate in ether lipid formation in Clostridium butyricum . Biochem Cell Biol68:225–230 [CrossRef][PubMed]
    [Google Scholar]
  33. MacDonald D. L., Goldfine H.. ( 1991;). Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricum under conditions of controlled lipid chain composition. Appl Environ Microbiol57:3517–3521[PubMed]
    [Google Scholar]
  34. Matsumoto M., Tamiya K., Koizumi K.. ( 1971;). Studies on neutral lipids and a new type of aldehydogenic ethanolamine phospholipid in Clostridium butyricum . J Biochem69:617–620[PubMed]
    [Google Scholar]
  35. Oulevey J., Bahl H., Thiele O. W.. ( 1986;). Novel alk-1-enyl ether lipids isolated from Clostridium acetobutylicum . Arch Microbiol144:166–168 [CrossRef]
    [Google Scholar]
  36. Roy H., Ibba M.. ( 2008;). RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A105:4667–4672[CrossRef]
    [Google Scholar]
  37. Santos-Buelga J. A., Collins M. D., East A. K.. ( 1998;). Characterization of the genes encoding the botulinum neurotoxin complex in a strain of Clostridium botulinum producing type B and F neurotoxins. Curr Microbiol37:312–318[CrossRef]
    [Google Scholar]
  38. Sebaihia M., Peck M. W., Minton N. P., Thomson N. R., Holden M. T. G., Mitchell W. J., Carter A. T., Bentley S. D., Mason D. R.. & other authors ( 2007;). Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res17:1082–1092 [CrossRef][PubMed]
    [Google Scholar]
  39. Suen J. C., Hatheway C. L., Steigerwalt A. G., Brenner D. J.. ( 1988;). Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J Clin Microbiol26:2191–2192[PubMed]
    [Google Scholar]
  40. Woese C. R., Fox G. E.. ( 1977;). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A74:5088–5090 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060707-0
Loading
/content/journal/micro/10.1099/mic.0.060707-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error