1887

Abstract

The ability to induce several cytokines relevant to tuberculosis (TNF-α, IL-1β, IL-6, IL-12p40 and IL-23) by cord factor (trehalose dimycolate) from CR-21 and CR-270 was studied in the cell lines RAW 264.7 and THP-1, and compared to the ability of cord factor from H37Rv, where this glycolipid appears to be implicated in the pathogenesis of tuberculosis. Details of the fine structure of these molecules were obtained by NMR and MS. The mycoloyl residues were identified as α and (ω-1)-methoxy in CR-21 and α in CR-270; in both cases they were di-unsaturated instead of cyclopropanated as found in . In RAW 264.7 cells, cord factors from CR-21, CR-270 and differed in their ability to stimulate IL-6, the higher levels corresponding to the cord factor from . In THP-1 cells, a similar overall profile of cytokines was found for CR-21 and CR-270, with high proportions of IL-1β and TNF-α, and different from , where IL-6 and IL-12p40 prevailed. The data obtained indicate that cord factors from the atypical mycobacteria CR-21 and CR-270 stimulated the secretion of several pro-inflammatory cytokines, although there were some differences with those of H37Rv. This finding seems to be due to their particular mycoloyl substituents and could be of interest when considering the potential adjuvanticity of these molecules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060681-0
2012-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2878.html?itemId=/content/journal/micro/10.1099/mic.0.060681-0&mimeType=html&fmt=ahah

References

  1. Ausina V., Luquin M., García Barceló M., Lanéelle M. A., Lévy-Frébault V., Belda F., Prats G.. ( 1992;). Mycobacterium alvei sp. nov.. Int J Syst Bacteriol42:529–535 [CrossRef][PubMed]
    [Google Scholar]
  2. Beckman E. M., Porcelli S. A., Morita C. T., Behar S. M., Furlong S. T., Brenner M. B.. ( 1994;). Recognition of a lipid antigen by CD1-restricted α β+ T cells. Nature372:691–694 [CrossRef][PubMed]
    [Google Scholar]
  3. Bloch H.. ( 1950;). Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms. J Exp Med91:197–218 [CrossRef][PubMed]
    [Google Scholar]
  4. Bowdish D. M. E., Sakamoto K., Kim M.-J., Kroos M., Mukhopadhyay S., Leifer C. A., Tryggvason K., Gordon S., Russell D. G.. ( 2009;). MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis . PLoS Pathog5:e1000474 [CrossRef][PubMed]
    [Google Scholar]
  5. Brennan P. J., Nikaido H.. ( 1995;). The envelope of mycobacteria. Annu Rev Biochem64:29–63 [CrossRef][PubMed]
    [Google Scholar]
  6. Cooper A. M., Khader S. A.. ( 2008;). The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev226:191–204 [CrossRef][PubMed]
    [Google Scholar]
  7. Cruz A., Fraga A. G., Fountain J. J., Rangel-Moreno J., Torrado E., Saraiva M., Pereira D. R., Randall T. D., Pedrosa J.. & other authors ( 2010;). Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis . J Exp Med207:1609–1616 [CrossRef][PubMed]
    [Google Scholar]
  8. Daffé M., Draper P.. ( 1997;). The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol39:131–203 [CrossRef][PubMed]
    [Google Scholar]
  9. Dao D. N., Sweeney K., Hsu T., Gurcha S. S., Nascimento I. P., Roshevsky D., Besra G. S., Chan J., Porcelli S. A., Jacobs W. R. Jr. ( 2008;). Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog4:e1000081 [CrossRef][PubMed]
    [Google Scholar]
  10. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Ridell M., Magnusson M.. ( 1985;). Systematic analysis of complex mycobacterial lipids. Chemical Methods in Bacterial Systematics237–265 Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  11. Eckstein T. M., Chandrasekaran S., Mahapatra S., McNeil M. R., Chatterjee D., Rithner C. D., Ryan P. W., Belisle J. T., Inamine J. M.. ( 2006;). A major cell wall lipopeptide of Mycobacterium avium subspecies paratuberculosis . J Biol Chem281:5209–5215 [CrossRef][PubMed]
    [Google Scholar]
  12. Falkinham J. O. III. ( 1996;). Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev9:177–215[PubMed]
    [Google Scholar]
  13. Fujita Y., Okamoto Y., Uenishi Y., Sunagawa M., Uchiyama T., Yano I.. ( 2007;). Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb Pathog43:10–21 [CrossRef][PubMed]
    [Google Scholar]
  14. Geisel R. E., Sakamoto K., Russell D. G., Rhoades E. R.. ( 2005;). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol174:5007–5015[PubMed][CrossRef]
    [Google Scholar]
  15. Hayashi D., Takii T., Fujiwara N., Fujita Y., Yano I., Yamamoto S., Kondo M., Yasuda E., Inagaki E.. & other authors ( 2009;). Comparable studies of immunostimulating activities in vitro among Mycobacterium bovis bacillus Calmette-Guérin (BCG) substrains. FEMS Immunol Med Microbiol56:116–128 [CrossRef][PubMed]
    [Google Scholar]
  16. Hunter R. L., Armitige L., Jagannath C., Actor J. K.. ( 2009;). TB research at UT-Houston–a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb)89:Suppl. 1S18–S25 [CrossRef][PubMed]
    [Google Scholar]
  17. Indrigo J., Hunter R. L. Jr, Actor J. K.. ( 2002;). Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology148:1991–1998[PubMed]
    [Google Scholar]
  18. Indrigo J., Hunter R. L. Jr, Actor J. K.. ( 2003;). Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology149:2049–2059 [CrossRef][PubMed]
    [Google Scholar]
  19. Ishikawa E., Ishikawa T., Morita Y. S., Toyonaga K., Yamada H., Takeuchi O., Kinoshita T., Akira S., Yoshikai Y., Yamasaki S.. ( 2009;). Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med206:2879–2888 [CrossRef][PubMed]
    [Google Scholar]
  20. Karakousis P. C., Bishai W. R., Dorman S. E.. ( 2004;). Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol6:105–116 [CrossRef][PubMed]
    [Google Scholar]
  21. Khader S. A., Bell G. K., Pearl J. E., Fountain J. J., Rangel-Moreno J., Cilley G. E., Shen F., Eaton S. M., Gaffen S. L.. & other authors ( 2007;). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol8:369–377 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim M.-J., Wainwright H. C., Locketz M., Bekker L.-G., Walther G.-B., Dittrich C., Visser A., Wang W., Hsu F.-F.. & other authors ( 2010;). Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med2:258–274 [CrossRef][PubMed]
    [Google Scholar]
  23. Korbel D. S., Schneider B. E., Schaible U. E.. ( 2008;). Innate immunity in tuberculosis: myths and truth. Microbes Infect10:995–1004 [CrossRef][PubMed]
    [Google Scholar]
  24. Korf J., Stoltz A., Verschoor J., De Baetselier P., Grooten J.. ( 2005;). The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol35:890–900 [CrossRef][PubMed]
    [Google Scholar]
  25. Lima V. M. F., Bonato V. L. D., Lima K. M., Dos Santos S. A., Dos Santos R. R., Gonçalves E. D. C., Faccioli L. H., Brandão I. T., Rodrigues-Junior J. M., Silva C. L.. ( 2001;). Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect Immun69:5305–5312 [CrossRef][PubMed]
    [Google Scholar]
  26. Lima K. M., Santos S. A., Lima V. M. F., Coelho-Castelo A. A., Rodrigues J. M. Jr, Silva C. L.. ( 2003;). Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis . Gene Ther10:678–685 [CrossRef][PubMed]
    [Google Scholar]
  27. Luquin M., Roussel J., López-Calahorra F., Lanéelle G., Ausina V., Lanéelle M. A.. ( 1990;). A novel mycolic acid in a Mycobacterium sp. from the environment. Eur J Biochem192:753–759 [CrossRef][PubMed]
    [Google Scholar]
  28. Luquin M., Ausina V., Vincent-Lévy-Frebault V., Lanéelle M. A., Belda F., García-Barceló M., Prats G., Daffé M.. ( 1993;). Mycobacterium brumae sp. nov., a rapidly growing, nonphotochromogenic mycobacterium. Int J Syst Bacteriol43:405–413 [CrossRef]
    [Google Scholar]
  29. Mederos L. M., Montoro E. H., Bernabéu A., Linares C., Valero-Guillén P. L.. ( 2010;). Structural studies of cord factors from Mycobacterium simiae related to the capacity for tumour necrosis factor alpha (α-TNF) induction. Microbiology156:3744–3753 [CrossRef][PubMed]
    [Google Scholar]
  30. Méndez-Samperio P.. ( 2010;). Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. Int J Infect Dis14:e366–e371 [CrossRef][PubMed]
    [Google Scholar]
  31. Minnikin D. E.. ( 1982;). Lipids: complex lipids. The Biology of the Mycobacteriavol. 195–184 Ratledge C., Stanford J. L.. London: Academic Press;
    [Google Scholar]
  32. Montamat-Sicotte D. J., Millington K. A., Willcox C. R., Hingley-Wilson S., Hackforth S., Innes J., Kon O.-M., Lammas D. A., Minnikin D. E.. & other authors ( 2011;). A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest121:2493–2503 [CrossRef][PubMed]
    [Google Scholar]
  33. Noll H., Bloch H., Asselineau J., Lederer E.. ( 1956;). The chemical structure of the cord factor of Mycobacterium tuberculosis . Biochim Biophys Acta20:299–309 [CrossRef][PubMed]
    [Google Scholar]
  34. Peyron P., Vaubourgeix J., Poquet Y., Levillain F., Botanch C., Bardou F., Daffé M., Emile J.-F., Marchou B.. & other authors ( 2008;). Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog4:e1000204[PubMed][CrossRef]
    [Google Scholar]
  35. Rao V., Fujiwara N., Porcelli S. A., Glickman M. S.. ( 2005;). Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med201:535–543 [CrossRef][PubMed]
    [Google Scholar]
  36. Rao V., Gao F., Chen B., Jacobs W. R. Jr, Glickman M. S.. ( 2006;). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest116:1660–1667 [CrossRef][PubMed]
    [Google Scholar]
  37. Rhoades E., Hsu F. F., Torrelles J. B., Turk J., Chatterjee D., Russell D. G.. ( 2003;). Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol48:875–888 [CrossRef][PubMed]
    [Google Scholar]
  38. Russell D. G.. ( 2007;). Who puts the tubercle in tuberculosis?. Nat Rev Microbiol5:39–47 [CrossRef][PubMed]
    [Google Scholar]
  39. Schoenen H., Bodendorfer B., Hitchens K., Manzanero S., Werninghaus K., Nimmerjahn F., Agger E. M., Stenger S., Andersen P.. & other authors ( 2010;). Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol184:2756–2760 [CrossRef][PubMed]
    [Google Scholar]
  40. Takayama K., Wang C., Besra G. S.. ( 2005;). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis . Clin Microbiol Rev18:81–101 [CrossRef][PubMed]
    [Google Scholar]
  41. Vander Beken S., Al Dulayymi J. R., Naessens T., Koza G., Maza-Iglesias M., Rowles R., Theunissen C., De Medts J., Lanckacker E.. & other authors ( 2011;). Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol41:450–460 [CrossRef][PubMed]
    [Google Scholar]
  42. Watanabe M., Aoyagi Y., Ridell M., Minnikin D. E.. ( 2001;). Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology147:1825–1837[PubMed]
    [Google Scholar]
  43. Welsh K. J., Abbott A. N., Hwang S.-A., Indrigo J., Armitige L. Y., Blackburn M. R., Hunter R. L. Jr, Actor J. K.. ( 2008;). A role for tumour necrosis factor-α, complement C5 and interleukin-6 in the initiation and development of the mycobacterial cord factor trehalose 6,6′-dimycolate induced granulomatous response. Microbiology154:1813–1824 [CrossRef][PubMed]
    [Google Scholar]
  44. Werninghaus K., Babiak A., Gross O., Holscher C., Dietrich H., Agger E. M., Mages J., Mocsai A., Schoenen H.. & other authors ( 2009;). Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ-Syk-Card9-dependent innate immune activation. J Exp Med206:89–97 [CrossRef]
    [Google Scholar]
  45. Zähringer U., Lindner B., Inamura S., Heine H., Alexander C.. ( 2008;). TLR2 – promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology213:205–224 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060681-0
Loading
/content/journal/micro/10.1099/mic.0.060681-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error