1887

Abstract

DNA-binding proteins from starved cells (Dps), which are encoded by many bacterial genomes, protect genomic DNA via non-specific DNA binding, as well as inhibition of free radical formation by chelating Fe(II). In the filamentous cyanobacterium , the second gene () in the low temperature-induced gene operon in strain M3 was found to encode a homologue of Dps, but for a long time this gene remained poorly characterized. A gene cluster, , was found later to be 100 % identical to the gene cluster in a closely related strain, PCC 7120. In the present study, we detected ferroxidase activity of the Lti46.2/All0458 protein, which formed a dodecamer, as found in other Dps proteins. In addition, three homologues of were found in strain PCC 7120, namely, , and . We analysed expression of the or gene cluster in both strains, M3 and PCC 7120, and confirmed its induction by low temperature. We found that the All0458–GFP fusion protein and the All1173–GFP fusion protein were localized to the nucleoids. In the null mutant, the transcript of the gene accumulated. These results suggest that there might be complex cooperation of various members of the family in protecting the genome from environmental stresses such as changing temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060657-0
2012-10-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2527.html?itemId=/content/journal/micro/10.1099/mic.0.060657-0&mimeType=html&fmt=ahah

References

  1. Alaleona F., Franceschini S., Ceci P., Ilari A., Chiancone E.. ( 2010;). Thermosynechococcus elongatus DpsA binds Zn(II) at a unique three histidine-containing ferroxidase center and utilizes O2 as iron oxidant with very high efficiency, unlike the typical Dps proteins. FEBS J277:903–917 [CrossRef][PubMed]
    [Google Scholar]
  2. Almirón M., Link A. J., Furlong D., Kolter R.. ( 1992;). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli . Genes Dev6:12B2646–2654 [CrossRef][PubMed]
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. ( 2003;). Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  4. Azam T. A., Ishihama A.. ( 1999;). Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem274:33105–33113 [CrossRef][PubMed]
    [Google Scholar]
  5. Cai Y. P., Wolk C. P.. ( 1990;). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol172:3138–3145[PubMed]
    [Google Scholar]
  6. Chen L., James L. P., Helmann J. D.. ( 1993;). Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol175:5428–5437[PubMed]
    [Google Scholar]
  7. Dundon W. G., Nishioka H., Polenghi A., Papinutto E., Zanotti G., Montemurro P., Del Giudice G., Rappuoli R., Montecucco C.. ( 2001;). The neutrophil-activating protein of Helicobacter pylori . Int J Med Microbiol291:545–550 [CrossRef][PubMed]
    [Google Scholar]
  8. Dwivedi K., Sen A., Bullerjahn G. S.. ( 1997;). Expression and mutagenesis of the dpsA gene of Synechococcus sp. PCC7942, encoding a DNA-binding protein involved in oxidative stress protection. FEMS Microbiol Lett155:85–91 [CrossRef]
    [Google Scholar]
  9. Ehira S., Ohmori M., Sato N.. ( 2005;). Role of the 5′-UTR in accumulation of the rbpA1 transcript at low temperature in the cyanobacterium Anabaena variabilis M3. FEMS Microbiol Lett251:91–98 [CrossRef][PubMed]
    [Google Scholar]
  10. Elhai J., Wolk C. P.. ( 1988a;). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol167:747–754 [CrossRef][PubMed]
    [Google Scholar]
  11. Elhai J., Wolk C. P.. ( 1988b;). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene68:119–138 [CrossRef][PubMed]
    [Google Scholar]
  12. Evans D. J. Jr, Evans D. G., Lampert H. C., Nakano H.. ( 1995;). Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene153:123–127 [CrossRef][PubMed]
    [Google Scholar]
  13. Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S. G., Wachtel E. J., Arad T., Finkel S. E., Kolter R., Minsky A.. ( 2001;). Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO J20:1184–1191 [CrossRef][PubMed]
    [Google Scholar]
  14. Golden J. W., Wiest D. R.. ( 1988;). Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Science242:1421–1423[CrossRef]
    [Google Scholar]
  15. Haikarainen T., Papageorgiou A. C.. ( 2010;). Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci67:341–351 [CrossRef][PubMed]
    [Google Scholar]
  16. Hernández J. A., Pellicer S., Huang L., Peleato M. L., Fillat M. F.. ( 2007;). FurA modulates gene expression of alr3808, a DpsA homologue in Nostoc (Anabaena) sp. PCC7120. FEBS Lett581:1351–1356 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaneko T., Nakamura Y., Wolk C. P., Kuritz T., Sasamoto S., Watanabe A., Iriguchi M., Ishikawa A., Kawashima K.. & other authors ( 2001;). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res8:205–213, 227–253 [CrossRef][PubMed]
    [Google Scholar]
  18. Maldener I., Lockau W., Cai Y. P., Wolk C. P.. ( 1991;). Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol Gen Genet225:113–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Miller J. H.. ( 1972;). Assay of β-galactosidase. Experiments in Molecular Genetics352–355 Miller J. H.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Nair S., Finkel S. E.. ( 2004;). Dps protects cells against multiple stresses during stationary phase. J Bacteriol186:4192–4198 [CrossRef][PubMed]
    [Google Scholar]
  21. Noordhoek G. T., Hermans P. W. M., Paul A. N., Schouls L. M., van der Sluis J. J., van Embden J. D. A.. ( 1989;). Treponema pallidum subspecies pallidum (Nichols) and Treponema pallidum subspecies pertenue (CDC 2575) differ in at least one nucleotide: comparison of two homologous antigens. Microb Pathog6:29–42 [CrossRef][PubMed]
    [Google Scholar]
  22. Peña M. M. O., Bullerjahn G. S.. ( 1995;). The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families. J Biol Chem270:22478–22482 [CrossRef][PubMed]
    [Google Scholar]
  23. Peña M. M. O., Burkhart W., Bullerjahn G. S.. ( 1995;). Purification and characterization of a Synechococcus sp. strain PCC 7942 polypeptide structurally similar to the stress-induced Dps/PexB protein of Escherichia coli . Arch Microbiol163:337–344 [CrossRef][PubMed]
    [Google Scholar]
  24. Pettijohn D. E.. ( 1996;). The nucleoid. Escherichia coli and Salmonella: Cellular and Molecular Biology158–166 Neidhardt F. C., Ingraham R. J. L.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Pfeifer O., Pelletier I., Altenbuchner J., van Pée K.-H.. ( 1992;). Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762. J Gen Microbiol138:1123–1131 [CrossRef][PubMed]
    [Google Scholar]
  26. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61 [CrossRef]
    [Google Scholar]
  27. Rouvière-Yaniv J., Gros F.. ( 1975;). Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli . Proc Natl Acad Sci U S A72:3428–3432 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasaki N. V., Sato N.. ( 2010;). CyanoClust: comparative genome resources of cyanobacteria and plastids. Database (Oxford) 2010:bap025[PubMed][CrossRef]
    [Google Scholar]
  29. Sato N.. ( 1992;). Cloning of a low-temperature-induced gene lti2 from the cyanobacterium Anabaena variabilis M3 that is homologous to α-amylases. Plant Mol Biol18:165–170 [CrossRef][PubMed]
    [Google Scholar]
  30. Sato N.. ( 1993;). Low temperature-induced genes. The Tissue Culture19:357–361
    [Google Scholar]
  31. Sato N.. ( 1994;). A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Mol Biol24:819–823 [CrossRef][PubMed]
    [Google Scholar]
  32. Sato N.. ( 1995;). A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res23:2161–2167 [CrossRef][PubMed]
    [Google Scholar]
  33. Sato N.. ( 2009;). Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics25:599–605 [CrossRef][PubMed]
    [Google Scholar]
  34. Sato N., Maruyama K.. ( 1997;). Differential regulation by low temperature of the gene for an RNA-binding protein, rbpA3, in the cyanobacterium Anabaena variabilis strain M3. Plant Cell Physiol38:81–86 [CrossRef][PubMed]
    [Google Scholar]
  35. Sato N., Nakamura A.. ( 1998;). Involvement of the 5′-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res26:2192–2199 [CrossRef][PubMed]
    [Google Scholar]
  36. Sato N., Wada A.. ( 1996;). Disruption analysis of the gene for a cold-regulated RNA-binding protein, rbpA1, in Anabaena: cold-induced initiation of the heterocyst differentiation pathway. Plant Cell Physiol37:1150–1160 [CrossRef][PubMed]
    [Google Scholar]
  37. Sen A., Dwivedi K., Rice K. A., Bullerjahn G. S.. ( 2000;). Growth phase and metal-dependent regulation of the dpsA gene in Synechococcus sp. strain PCC 7942, USA. Arch Microbiol173:352–357 [CrossRef][PubMed]
    [Google Scholar]
  38. Toyoshima M., Sasaki N. V., Fujiwara M., Ehira S., Ohmori M., Sato N.. ( 2010;). Early candidacy for differentiation into heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120. Arch Microbiol192:23–31 [CrossRef][PubMed]
    [Google Scholar]
  39. van Wuytswinkel O., Briat J. F.. ( 1995;). Conformational changes and in vitro core-formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin. Biochem J305:959–965[PubMed]
    [Google Scholar]
  40. Wei X., Mingjia H., Xiufeng L., Yang G., Qingyu W.. ( 2007;). Identification and biochemical properties of Dps (starvation-induced DNA binding protein) from cyanobacterium Anabaena sp. PCC 7120. IUBMB Life59:675–681 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., Chasteen N. D.. ( 2002;). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli . J Biol Chem277:27689–27696 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060657-0
Loading
/content/journal/micro/10.1099/mic.0.060657-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error