1887

Abstract

MTCC 1360 showed 87 % decolorization of the azo dye Rubine GFL (50 mg l) within 96 h at 30 °C and pH 7.0 under static conditions, with significant reduction of chemical oxygen demand (67 %) and total organic carbon (59 %). Examination of oxidoreductive enzymes, namely laccase, tyrosinase and azo reductase, confirmed their role in decolorization and degradation of Rubine GFL. Biodegradation of Rubine GFL into different metabolites was confirmed using high-performance TLC, HPLC, Fourier transform IR spectroscopy and GC-MS analysis. During toxicological studies, cell death was observed in Rubine GFL-treated root cells. Toxicological studies before and after microbial treatment were done with respect to cytotoxicity, genotoxicity, oxidative stress, antioxidant enzyme status, protein oxidation and lipid peroxidation using root cells of . The analysis with showed that the dye exerts oxidative stress and subsequently has a toxic effect on the root cells, whereas its metabolites are less toxic. Phytotoxicity studies revealed the less toxic nature of the metabolites as compared with Rubine GFL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060467-0
2012-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2344.html?itemId=/content/journal/micro/10.1099/mic.0.060467-0&mimeType=html&fmt=ahah

References

  1. Achary V. M. M. , Jena S. , Panda K. K. , Panda B. B. . ( 2008; ). Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.. Ecotoxicol Environ Saf 70:, 300–310. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amoozegar M. A. , Hajighasemi M. , Hamedi J. , Asad S. , Ventosa A. . ( 2011; ). Azo dye decolorization by halophilic and halotolerant microorganisms. . Ann Microbiol 61:, 217–230. [CrossRef]
    [Google Scholar]
  3. APHA ( 1998; ). Standard Method for the Examination of Water and Wastewater, , 20th edn.. Washington, DC:: American Public Health Association;.
    [Google Scholar]
  4. Caritá R. , Marin-Morales M. A. . ( 2008; ). Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. . Chemosphere 72:, 722–725. [PubMed] [CrossRef]
    [Google Scholar]
  5. Cervantes F. J. , Garcia-Espinosa A. , Moreno-Reynosa M. A. , Rangel-Mendez J. R. . ( 2010; ). Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. . Environ Sci Technol 44:, 1747–1753. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen B. Y. . ( 2002; ). Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. . Process Biochem 38:, 437–446. [CrossRef]
    [Google Scholar]
  7. Dawkar V. V. , Jadhav U. U. , Jadhav M. U. , Kagalkar A. N. , Govindwar S. P. . ( 2010; ). Decolorization and detoxification of sulphonated azo dye Red HE7B by Bacillus sp. VUS. . World J Microbiol Biotechnol 26:, 909–916. [CrossRef]
    [Google Scholar]
  8. Ezaki B. , Gardner R. C. , Ezaki Y. , Matsumoto H. . ( 2000; ). Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. . Plant Physiol 122:, 657–666. [CrossRef] [PubMed]
    [Google Scholar]
  9. Handayani W. , Meitiniarti V. I. , Timotius K. H. . ( 2007; ). Decolorization of Acid Red 27 and Reactive Red 2 by Enterococcus faecalis under a batch system. . World J Microbiol Biotechnol 23:, 1239–1244. [CrossRef]
    [Google Scholar]
  10. Jadhav J. P. , Kalyani D. C. , Telke A. A. , Phugare S. S. , Govindwar S. P. . ( 2010; ). Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. . Bioresour Technol 101:, 165–173. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jadhav S. B. , Phugare S. S. , Patil P. S. , Jadhav J. P. . ( 2011; ). Biochemical degradation pathway of textile dye Remazol Red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. . Int Biodeter Biodegrd 65:, 733–743. [CrossRef]
    [Google Scholar]
  12. Joe M. , Lim S. Y. , Kim D. H. , Lee I. S. . ( 2008; ). Decolorization of reactive dyes by Clostridium bifermentans SL186 isolated from contaminated soil. . World J Microbiol Biotechnol 24:, 2221–2226. [CrossRef]
    [Google Scholar]
  13. Kumar V. , Bal A. , Gill K. D. . ( 2009; ). Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. . Toxicology 264:, 137–144. [CrossRef] [PubMed]
    [Google Scholar]
  14. Liu G. , Zhou J. , Wang J. , Zhou M. , Lu H. , Jin R. . ( 2009; ). Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. . Bioresour Technol 100:, 2791–2795. [CrossRef] [PubMed]
    [Google Scholar]
  15. Meriga B. , Reddy B. K. , Rao K. R. , Reddy L. A. , Kishor P. B. K. . ( 2004; ). Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). . J Plant Physiol 161:, 63–68. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mihaljević Z. , Ternjej I. , Stanković I. , Kerovec M. , Kopjar N. . ( 2009; ). Application of the comet assay and detection of DNA damage in haemocytes of medicinal leech affected by aluminium pollution: a case study. . Environ Pollut 157:, 1565–1572. [CrossRef] [PubMed]
    [Google Scholar]
  17. Niebisch C. H. , Malinowski A. K. , Schadeck R. , Mitchell D. A. , Kava-Cordeiro V. , Paba J. . ( 2010; ). Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. . J Hazard Mater 180:, 316–322. [CrossRef] [PubMed]
    [Google Scholar]
  18. Parshetti G. K. , Telke A. A. , Kalyani D. C. , Govindwar S. P. . ( 2010; ). Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. . J Hazard Mater 176:, 503–509. [CrossRef] [PubMed]
    [Google Scholar]
  19. Phugare S. S. , Kalyani D. C. , Surwase S. N. , Jadhav J. A. . ( 2011; ). Ecofriendly degradation and detoxification of textile effluent by a developed bacterial consortium. . Ecotoxicol Environ Saf 74:, 1288–1296.[CrossRef]
    [Google Scholar]
  20. Saratale R. G. , Saratale G. D. , Chang J. S. , Govindwar S. P. . ( 2010; ). Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. . Biodegradation 21:, 999–1015. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saratale R. G. , Saratale G. D. , Chang J. S. , Govindwar S. P. . ( 2011; ). Bacterial decolorization and degradation of azo dyes: a review. . J Taiwan Inst Chem Eng 42:, 138–157. [CrossRef]
    [Google Scholar]
  22. Sponza D. T. , Isik M. . ( 2005; ). Toxicity and intermediates of C. I. Direct Red 28 dye through sequential anaerobic/aerobic treatment. . Process Biochem 40:, 2735–2744. [CrossRef]
    [Google Scholar]
  23. Tamboli D. P. , Kagalkar A. N. , Jadhav M. U. , Jadhav J. P. , Govindwar S. P. . ( 2010a; ). Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B. . Bioresour Technol 101:, 2421–2427. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamboli D. P. , Kurade M. B. , Waghmode T. R. , Joshi S. M. , Govindwar S. P. . ( 2010b; ). Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation. . J Hazard Mater 182:, 169–176. [CrossRef] [PubMed]
    [Google Scholar]
  25. Telke A. A. , Joshi S. M. , Jadhav S. U. , Tamboli D. P. , Govindwar S. P. . ( 2010; ). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. . Biodegradation 21:, 283–296. [CrossRef] [PubMed]
    [Google Scholar]
  26. Waghmode T. R. , Kurade M. B. , Govindwar S. P. . ( 2011a; ). Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. . Int Biodeter Biodegrad 65:, 479–486. [CrossRef]
    [Google Scholar]
  27. Waghmode T. R. , Kurade M. B. , Khandare R. V. , Govindwar S. P. . ( 2011b; ). A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GG-BL. . Inter Biodeter Biodegrad 65:, 1024–1034. [CrossRef]
    [Google Scholar]
  28. Yu L. , Li W. W. , Lam M. H. W. , Yu H. Q. . ( 2011; ). Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. . Appl Microbiol Biotechnol 90:, 1119–1127. [PubMed] [CrossRef]
    [Google Scholar]
  29. Zhang Y. , Jing Y. , Quan X. , Liu Y. , Onu P. . ( 2011; ). A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater. . Water Sci Technol 63:, 741–746. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060467-0
Loading
/content/journal/micro/10.1099/mic.0.060467-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error