1887

Abstract

The deltaproteobacterium predates upon members of the soil microbial community by secreting digestive factors and lysing prey cells. Like other Gram-negative bacteria, produces outer membrane vesicles (OMVs), and we show here that OMVs are able to kill cells. The OMVs of were found to contain active proteases, phosphatases, other hydrolases and secondary metabolites. Alkaline phosphatase activity was found to be almost exclusively associated with OMVs, implying that there is active targeting of phosphatases into OMVs, while other OMV components appear to be packaged passively. The kinetic properties of OMV alkaline phosphatase suggest that there may have been evolutionary adaptation of OMV enzymes to a relatively indiscriminate mode of action, consistent with a role in predation. In addition, the observed regulation of production, and fragility of OMV activity, may protect OMV-producing cells from exploitation by cheating genotypes and/or other competitors. Killing of by OMVs was enhanced by the addition of a fusogenic enzyme (glyceraldehyde-3-phosphate dehydrogenase; GAPDH), which triggers fusion of vesicles with target membranes within eukaryotic cells. This suggests that the mechanism of prey killing involves OMV fusion with the outer membrane. secretes GAPDH, which could potentially modulate the fusion of co-secreted OMVs with prey organisms in nature, enhancing their predatory activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060343-0
2012-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2742.html?itemId=/content/journal/micro/10.1099/mic.0.060343-0&mimeType=html&fmt=ahah

References

  1. Assunção P. , Antunes N. T. , Rosales R. S. , Poveda C. , Poveda J. B. , Davey H. M. . ( 2006; ). Flow cytometric determination of the effects of antibacterial agents on Mycoplasma agalactiae, Mycoplasma putrefaciens, Mycoplasma capricolum subsp. capricolum, and Mycoplasma mycoides subsp. mycoides large colony type. . Antimicrob Agents Chemother 50:, 2845–2849. [CrossRef] [PubMed]
    [Google Scholar]
  2. Berleman J. E. , Kirby J. R. . ( 2009; ). Deciphering the hunting strategy of a bacterial wolfpack. . FEMS Microbiol Rev 33:, 942–957. [CrossRef] [PubMed]
    [Google Scholar]
  3. Berleman J. E. , Chumley T. , Cheung P. , Kirby J. R. . ( 2006; ). Rippling is a predatory behavior in Myxococcus xanthus . . J Bacteriol 188:, 5888–5895. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bomberger J. M. , Maceachran D. P. , Coutermarsh B. A. , Ye S. , O’Toole G. A. , Stanton B. A. . ( 2009; ). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. . PLoS Pathog 5:, e1000382. [CrossRef] [PubMed]
    [Google Scholar]
  5. Curtis P. D. , Atwood J. III , Orlando R. , Shimkets L. J. . ( 2007; ). Proteins associated with the Myxococcus xanthus extracellular matrix. . J Bacteriol 189:, 7634–7642. [CrossRef] [PubMed]
    [Google Scholar]
  6. Davey H. M. . ( 2011; ). Life, death, and in-between: meanings and methods in microbiology. . Appl Environ Microbiol 77:, 5571–5576. [CrossRef] [PubMed]
    [Google Scholar]
  7. Davey H. M. , Kell D. B. . ( 1996; ). Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. . Microbiol Rev 60:, 641–696.[PubMed]
    [Google Scholar]
  8. Egea L. , Aguilera L. , Giménez R. , Sorolla M. A. , Aguilar J. , Badía J. , Baldoma L. . ( 2007; ). Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. . Int J Biochem Cell Biol 39:, 1190–1203. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fiegna F. , Velicer G. J. . ( 2003; ). Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. . Proc Biol Sci 270:, 1527–1534. [CrossRef] [PubMed]
    [Google Scholar]
  10. Glaser P. E. , Gross R. W. . ( 1995; ). Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. . Biochemistry 34:, 12193–12203. [CrossRef] [PubMed]
    [Google Scholar]
  11. Horstman A. L. , Kuehn M. J. . ( 2000; ). Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. . J Biol Chem 275:, 12489–12496. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kadurugamuwa J. L. , Beveridge T. J. . ( 1996; ). Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. . J Bacteriol 178:, 2767–2774.[PubMed]
    [Google Scholar]
  13. Kahnt J. , Aguiluz K. , Koch J. , Treuner-Lange A. , Konovalova A. , Huntley S. , Hoppert M. , Søgaard-Andersen L. , Hedderich R. . ( 2010; ). Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. . J Proteome Res 9:, 5197–5208. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kaiser D. . ( 1979; ). Social gliding is correlated with the presence of pili in Myxococcus xanthus . . Proc Natl Acad Sci U S A 76:, 5952–5956. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kaiser D. , Robinson M. , Kroos L. . ( 2010; ). Myxobacteria, polarity, and multicellular morphogenesis. . Cold Spring Harb Perspect Biol 2:, a000380. [CrossRef] [PubMed]
    [Google Scholar]
  16. Khandelwal P. , Banerjee-Bhatnagar N. . ( 2003; ). Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus . . Appl Environ Microbiol 69:, 2032–2037. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim J. Y. , Doody A. M. , Chen D. J. , Cremona G. H. , Shuler M. L. , Putnam D. , DeLisa M. P. . ( 2008; ). Engineered bacterial outer membrane vesicles with enhanced functionality. . J Mol Biol 380:, 51–66. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kulp A. , Kuehn M. J. . ( 2010; ). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. . Annu Rev Microbiol 64:, 163–184. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kümmerli R. , Brown S. P. . ( 2010; ). Molecular and regulatory properties of a public good shape the evolution of cooperation. . Proc Natl Acad Sci U S A 107:, 18921–18926. [CrossRef] [PubMed]
    [Google Scholar]
  20. Li Z. , Clarke A. J. , Beveridge T. J. . ( 1998; ). Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. . J Bacteriol 180:, 5478–5483.[PubMed]
    [Google Scholar]
  21. López-Amorós R. , Castel S. , Comas-Riu J. , Vives-Rego J. . ( 1997; ). Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. . Cytometry 29:, 298–305. [CrossRef] [PubMed]
    [Google Scholar]
  22. Malamy M. , Horecker B. L. . ( 1966; ). Alkaline phosphatase (crystalline). . Methods Enzymol 9:, 639–642. [CrossRef]
    [Google Scholar]
  23. Mashburn-Warren L. M. , Whiteley M. . ( 2006; ). Special delivery: vesicle trafficking in prokaryotes. . Mol Microbiol 61:, 839–846. [CrossRef] [PubMed]
    [Google Scholar]
  24. Meiser P. , Bode H. B. , Müller R. . ( 2006; ). The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. . Proc Natl Acad Sci U S A 103:, 19128–19133. [CrossRef] [PubMed]
    [Google Scholar]
  25. Meiser P. , Weissman K. J. , Bode H. B. , Krug D. , Dickschat J. S. , Sandmann A. , Müller R. . ( 2008; ). DKxanthene biosynthesis—understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. . Chem Biol 15:, 771–781. [CrossRef] [PubMed]
    [Google Scholar]
  26. Moraleda-Muñoz A. , Carrero-Lérida J. , Pérez J. , Muñoz-Dorado J. . ( 2003; ). Role of two novel two-component regulatory systems in development and phosphatase expression in Myxococcus xanthus . . J Bacteriol 185:, 1376–1383. [CrossRef] [PubMed]
    [Google Scholar]
  27. Morgan A. D. , MacLean R. C. , Hillesland K. L. , Velicer G. J. . ( 2010; ). Comparative analysis of Myxococcus predation on soil bacteria. . Appl Environ Microbiol 76:, 6920–6927. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nakagawa T. , Hirano Y. , Inomata A. , Yokota S. , Miyachi K. , Kaneda M. , Umeda M. , Furukawa K. , Omata S. , Horigome T. . ( 2003; ). Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. . J Biol Chem 278:, 20395–20404. [CrossRef] [PubMed]
    [Google Scholar]
  29. Nossal N. G. , Heppel L. A. . ( 1966; ). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. . J Biol Chem 241:, 3055–3062.[PubMed]
    [Google Scholar]
  30. Palsdottir H. , Remis J. P. , Schaudinn C. , O’Toole E. , Lux R. , Shi W. , McDonald K. L. , Costerton J. W. , Auer M. . ( 2009; ). Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. . J Bacteriol 191:, 2077–2082. [CrossRef] [PubMed]
    [Google Scholar]
  31. Pham V. D. , Shebelut C. W. , Diodati M. E. , Bull C. T. , Singer M. . ( 2005; ). Mutations affecting predation ability of the soil bacterium Myxococcus xanthus . . Microbiology 151:, 1865–1874. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pham V. D. , Shebelut C. W. , Jose I. R. , Hodgson D. A. , Whitworth D. E. , Singer M. . ( 2006; ). The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus . . Microbiology 152:, 1609–1620. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pierson T. , Matrakas D. , Taylor Y. U. , Manyam G. , Morozov V. N. , Zhou W. , van Hoek M. L. . ( 2011; ). Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. . J Proteome Res 10:, 954–967. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reichenbach H. , Dworkin M. . ( 1981; ). The Order Myxobacterales. . In The Prokaryotes, pp. 328–355. Edited by Starr M. P. , Stolp H. , Truper H. G. , Balows A. , Schlegel H. G. . . Berlin:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  35. Rosenberg E. , Keller K. H. , Dworkin M. . ( 1977; ). Cell density-dependent growth of Myxococcus xanthus on casein. . J Bacteriol 129:, 770–777.[PubMed]
    [Google Scholar]
  36. Sambrook J. , Fritsch E. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  37. Sanders H. , Feavers I. M. . ( 2011; ). Adjuvant properties of meningococcal outer membrane vesicles and the use of adjuvants in Neisseria meningitidis protein vaccines. . Expert Rev Vaccines 10:, 323–334. [CrossRef] [PubMed]
    [Google Scholar]
  38. Scheer M. , Grote A. , Chang A. , Schomburg I. , Munaretto C. , Rother M. , Söhngen C. , Stelzer M. , Thiele J. , Schomburg D. . ( 2011; ). BRENDA, the enzyme information system in 2011. . Nucleic Acids Res 39: (Database issue), D670–D676. [CrossRef] [PubMed]
    [Google Scholar]
  39. Schneiker S. , Perlova O. , Kaiser O. , Gerth K. , Alici A. , Altmeyer M. O. , Bartels D. , Bekel T. , Beyer S. . & other authors ( 2007; ). Complete genome sequence of the myxobacterium Sorangium cellulosum . . Nat Biotechnol 25:, 1281–1289. [CrossRef] [PubMed]
    [Google Scholar]
  40. Silhavy T. J. , Berman M. L. , Enquist L. W. . ( 1984; ). Experiments with Gene Fusions, pp. 209–212. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  41. Tisdale E. J. . ( 2001; ). Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. . J Biol Chem 276:, 2480–2486. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tisdale E. J. , Kelly C. , Artalejo C. R. . ( 2004; ). Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. . J Biol Chem 279:, 54046–54052. [CrossRef] [PubMed]
    [Google Scholar]
  43. Travisano M. , Velicer G. J. . ( 2004; ). Strategies of microbial cheater control. . Trends Microbiol 12:, 72–78. [CrossRef] [PubMed]
    [Google Scholar]
  44. Troeberg L. , Nagase H. . ( 2004; ). Zymography of metalloproteinases. . Curr Protoc Protein Sci 21:, 15.[PubMed]
    [Google Scholar]
  45. Tunio S. A. , Oldfield N. J. , Ala’Aldeen D. A. , Wooldridge K. G. , Turner D. P. . ( 2010; ). The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. . BMC Microbiol 10:, 280. [CrossRef] [PubMed]
    [Google Scholar]
  46. Velicer G. J. . ( 2008; ). Why cooperate? The ecology and evolution of myxobacteria. . In Myxobacteria, Multicellularity and Differentiation, pp. 17–40. Edited by Whitworth D. E. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  47. Velicer G. J. , Vos M. . ( 2009; ). Sociobiology of the myxobacteria. . Annu Rev Microbiol 63:, 599–623. [CrossRef] [PubMed]
    [Google Scholar]
  48. Weinberg R. A. , Zusman D. R. . ( 1990; ). Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus . . J Bacteriol 172:, 2294–2302.[PubMed]
    [Google Scholar]
  49. Wenzel S. C. , Müller R. . ( 2009; ). The biosynthetic potential of myxobacteria and their impact in drug discovery. . Curr Opin Drug Discov Devel 12:, 220–230.[PubMed]
    [Google Scholar]
  50. Whitworth D. E. . ( 2008; ). Myxobacteria: Multicellularity and Differentiation. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  51. Whitworth D. E. . ( 2011; ). Myxobacterial vesicles: death at a distance?. Adv Appl Microbiol 75:, 1–31. [CrossRef] [PubMed]
    [Google Scholar]
  52. Whitworth D. E. , Holmes A. B. , Irvine A. G. , Hodgson D. A. , Scanlan D. J. . ( 2008; ). Phosphate acquisition components of the Myxococcus xanthus Pho regulon are regulated by both phosphate availability and development. . J Bacteriol 190:, 1997–2003. [CrossRef] [PubMed]
    [Google Scholar]
  53. Yonezawa H. , Osaki T. , Kurata S. , Fukuda M. , Kawakami H. , Ochiai K. , Hanawa T. , Kamiya S. . ( 2009; ). Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. . BMC Microbiol 9:, 197. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060343-0
Loading
/content/journal/micro/10.1099/mic.0.060343-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error