1887

Abstract

The Clp/HSP100 family of molecular chaperones is ubiquitous in both prokaryotes and eukaryotes. These proteins play important roles in refolding, disaggregating and degrading proteins damaged by stress. As a subclass of the Clp/HSP100 family, ClpB has been shown to be involved in various stress responses as well as other functions in bacteria. In the present study, we investigated the role of a predicted ClpB-encoding gene, , in the stress response during vegetative growth and development of . Transcriptional analysis confirmed induction of this homologue under different stress conditions, and further phenotypic analysis revealed that an in-frame deletion mutant of was more sensitive to various stress treatments than the wild-type strain during vegetative growth. Moreover, the absence of the gene resulted in decreased heat tolerance of myxospores, indicating the involvement of this homologue in the stress response during the development of myxospores. The recombinant ClpB (MXAN5092) protein also showed a general chaperone activity . Overall, our genetic and phenotypic analysis of the predicted ATP-dependent chaperone protein ClpB (MXAN5092) demonstrated that it functions as a chaperone protein and plays an important role in cellular stress tolerance during both vegetative growth and development of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060103-0
2012-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2336.html?itemId=/content/journal/micro/10.1099/mic.0.060103-0&mimeType=html&fmt=ahah

References

  1. Barnett M. E., Zolkiewska A., Zolkiewski M.. ( 2000;). Structure and activity of ClpB from Escherichia coli. Role of the amino- and carboxyl-terminal domains. J Biol Chem275:37565–37571 [CrossRef][PubMed]
    [Google Scholar]
  2. Ben-Zvi A. P., Goloubinoff P.. ( 2001;). Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol135:84–93 [CrossRef][PubMed]
    [Google Scholar]
  3. Campos J. M., Geisselsoder J., Zusman D. R.. ( 1978;). Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol119:167–178 [CrossRef][PubMed]
    [Google Scholar]
  4. Capestany C. A., Tribble G. D., Maeda K., Demuth D. R., Lamont R. J.. ( 2008;). Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol190:1436–1446 [CrossRef][PubMed]
    [Google Scholar]
  5. Chastanet A., Derre I., Nair S., Msadek T.. ( 2004;). clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol186:1165–1174 [CrossRef][PubMed]
    [Google Scholar]
  6. de Oliveira N. E., Abranches J., Gaca A. O., Laport M. S., Damaso C. R., Bastos M. C., Lemos J. A., Giambiagi-deMarval M.. ( 2011;). clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology157:656–665 [CrossRef][PubMed]
    [Google Scholar]
  7. Dougan D. A., Mogk A., Zeth K., Turgay K., Bukau B.. ( 2002;). AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett529:6–10 [CrossRef][PubMed]
    [Google Scholar]
  8. Ekaza E., Teyssier J., Ouahrani-Bettache S., Liautard J. P., Köhler S.. ( 2001;). Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses. J Bacteriol183:2677–2681 [CrossRef][PubMed]
    [Google Scholar]
  9. Goldman B. S., Nierman W. C., Kaiser D., Slater S. C., Durkin A. S., Eisen J. A., Ronning C. M., Barbazuk W. B., Blanchard M.. & other authors ( 2006;). Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A103:15200–15205 [CrossRef][PubMed]
    [Google Scholar]
  10. Goldman B., Bhat S., Shimkets L. J.. ( 2007;). Genome evolution and the emergence of fruiting body development in Myxococcus xanthus. PLoS ONE2:e1329 [CrossRef][PubMed]
    [Google Scholar]
  11. Ishikawa M., Okamoto-Kainuma A., Matsui K., Takigishi A., Kaga T., Koizumi Y.. ( 2010;). Cloning and characterization of clpB in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng110:69–71 [CrossRef][PubMed]
    [Google Scholar]
  12. Julien B., Kaiser A. D., Garza A.. ( 2000;). Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci U S A97:9098–9103 [CrossRef][PubMed]
    [Google Scholar]
  13. Kaiser D.. ( 1979;). Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A76:5952–5956 [CrossRef][PubMed]
    [Google Scholar]
  14. Kannan T. R., Musatovova O., Gowda P., Baseman J. B.. ( 2008;). Characterization of a unique ClpB protein of Mycoplasma pneumoniae and its impact on growth. Infect Immun76:5082–5092 [CrossRef][PubMed]
    [Google Scholar]
  15. Kearns D. B., Campbell B. D., Shimkets L. J.. ( 2000;). Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. Proc Natl Acad Sci U S A97:11505–11510 [CrossRef][PubMed]
    [Google Scholar]
  16. Kroos L., Kuspa A., Kaiser D.. ( 1986;). A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol117:252–266 [CrossRef][PubMed]
    [Google Scholar]
  17. Li J., Wang Y., Zhang C. Y., Zhang W. Y., Jiang D. M., Wu Z. H., Liu H., Li Y. Z.. ( 2010;). Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development. J Bacteriol192:1875–1881 [CrossRef][PubMed]
    [Google Scholar]
  18. Lourdault K., Cerqueira G. M., Wunder E. A. Jr, Picardeau M.. ( 2011;). Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect Immun79:3711–3717 [CrossRef][PubMed]
    [Google Scholar]
  19. Meibom K. L., Dubail I., Dupuis M., Barel M., Lenco J., Stulik J., Golovliov I., Sjöstedt A., Charbit A.. ( 2008;). The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol67:1384–1401 [CrossRef][PubMed]
    [Google Scholar]
  20. Motohashi K., Watanabe Y., Yohda M., Yoshida M.. ( 1999;). Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci U S A96:7184–7189 [CrossRef][PubMed]
    [Google Scholar]
  21. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V.. ( 1999;). AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res9:27–43[PubMed]
    [Google Scholar]
  22. Otani M., Ueki T., Kozuka S., Segawa M., Sano K., Inouye S.. ( 2005;). Characterization of a small heat shock protein, Mx Hsp16.6, of Myxococcus xanthus. J Bacteriol187:5236–5241 [CrossRef][PubMed]
    [Google Scholar]
  23. Pan H. W., Liu H., Liu T., Li C. Y., Li Z. F., Cai K., Zhang C. Y., Zhang Y., Hu W.. & other authors ( 2009;). Seawater-regulated genes for two-component systems and outer membrane proteins in Myxococcus. J Bacteriol191:2102–2111 [CrossRef][PubMed]
    [Google Scholar]
  24. Pan H. W., Tan Z. G., Liu H., Li Z. F., Zhang C. Y., Li C. Y., Li J., Li Y. Z.. ( 2010;). Hdsp, a horizontally transferred gene required for social behavior and halotolerance in salt-tolerant Myxococcus fulvus HW-1. ISME J4:1282–1289 [CrossRef][PubMed]
    [Google Scholar]
  25. Shi W., Zusman D. R.. ( 1993;). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A90:3378–3382 [CrossRef][PubMed]
    [Google Scholar]
  26. Shih C. J., Lai M. C.. ( 2007;). Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiology153:2572–2583 [CrossRef][PubMed]
    [Google Scholar]
  27. Shimkets L. J.. ( 1990;). Social and developmental biology of the myxobacteria. Microbiol Rev54:473–501[PubMed]
    [Google Scholar]
  28. Simão R. C., Susin M. F., Alvarez-Martinez C. E., Gomes S. L.. ( 2005;). Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Mol Microbiol57:592–603 [CrossRef][PubMed]
    [Google Scholar]
  29. Squires C. L., Pedersen S., Ross B. M., Squires C.. ( 1991;). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol173:4254–4262[PubMed]
    [Google Scholar]
  30. Sugimoto S., Yoshida H., Mizunoe Y., Tsuruno K., Nakayama J., Sonomoto K.. ( 2006;). Structural and functional conversion of molecular chaperone ClpB from the Gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J Bacteriol188:8070–8078 [CrossRef][PubMed]
    [Google Scholar]
  31. Ueki T., Inouye S., Inouye M.. ( 1996;). Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene183:153–157 [CrossRef][PubMed]
    [Google Scholar]
  32. Ventura M., Kenny J. G., Zhang Z., Fitzgerald G. F., van Sinderen D.. ( 2005;). The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology151:2861–2872 [CrossRef][PubMed]
    [Google Scholar]
  33. Weimer R. M., Creighton C., Stassinopoulos A., Youderian P., Hartzell P. L.. ( 1998;). A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J Bacteriol180:5357–5368[PubMed]
    [Google Scholar]
  34. Yamasaki T., Nakazaki Y., Yoshida M., Watanabe Y. H.. ( 2011;). Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J278:2395–2403 [CrossRef][PubMed]
    [Google Scholar]
  35. Yan J., Garza A. G., Bradley M. D., Welch R. D.. ( 2012;). A Clp/Hsp100 chaperone functions in Myxococcus xanthus sporulation and self-organization. J Bacteriol194:1689–1696 [CrossRef][PubMed]
    [Google Scholar]
  36. Yang Z., Geng Y., Shi W.. ( 1998;). A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J Bacteriol180:218–224[PubMed]
    [Google Scholar]
  37. Yuan L., Rodrigues P. H., Bélanger M., Dunn W. Jr, Progulske-Fox A.. ( 2007;). The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo. FEMS Immunol Med Microbiol51:388–398 [CrossRef][PubMed]
    [Google Scholar]
  38. Zolkiewski M.. ( 1999;). ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem274:28083–28086 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060103-0
Loading
/content/journal/micro/10.1099/mic.0.060103-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error