1887

Abstract

HTA426, a thermophilic -related species, utilizes some inositol stereoisomers, including -, -- and -inositols (MI, DCI and SI), as sole carbon sources. Within its genome are three paralogous genes that possibly encode inositol dehydrogenase. These genes are located in tandem within a large gene cluster containing an almost complete set of genes homologous to genes involved in inositol catabolism in . Each of the three plausible inositol dehydrogenases was purified as a His-tag fusion. The enzymes exhibited thermophilic activity, each with its own characteristic specificity for the inositol stereoisomers and cofactors. Northern blot and primer extension analyses revealed that the three enzymes were encoded by the same 5 kb polycistronic transcript and were induced simultaneously in the presence of MI. HTA426 was subjected to ethyl methanesulfonate (EMS) mutagenesis to isolate a mutant strain, PS8, which was not able to utilize MI. In PS8, inositol dehydrogenase activity was abolished along with the 5 kb transcript, suggesting that any of the three enzymes supports MI-dependent growth. Analysis of metabolites in HTA426 cells grown in the presence of MI revealed that substantial amounts of DCI and SI appeared intracellularly during the stationary phase, while only MI was present in PS8 cells, suggesting that interconversion of inositol stereoisomers may involve these three enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059980-0
2012-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1942.html?itemId=/content/journal/micro/10.1099/mic.0.059980-0&mimeType=html&fmt=ahah

References

  1. Anderson W. A., Magasanik B.. ( 1971a;). The pathway of myo-inositol degradation in Aerobacter aerogenes. Identification of the intermediate 2-deoxy-5-keto-d-gluconic acid. J Biol Chem246:5653–5661[PubMed]
    [Google Scholar]
  2. Anderson W. A., Magasanik B.. ( 1971b;). The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-d-gluconic acid to glycolytic intermediates. J Biol Chem246:5662–5675[PubMed]
    [Google Scholar]
  3. Berman T., Magasanik B.. ( 1966a;). The pathway of myo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J Biol Chem241:800–806[PubMed]
    [Google Scholar]
  4. Berman T., Magasanik B.. ( 1966b;). The pathway of myo-inositol degradation in Aerobacter aerogenes. Ring scission. J Biol Chem241:807–813[PubMed]
    [Google Scholar]
  5. Chiti F., Dobson C. M.. ( 2006;). Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem75:333–366 [CrossRef][PubMed]
    [Google Scholar]
  6. Fujita Y., Shindo K., Miwa Y., Yoshida K.. ( 1991;). Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli . Gene108:121–125 [CrossRef][PubMed]
    [Google Scholar]
  7. Galbraith M. P., Feng S. F., Borneman J., Triplett E. W., de Bruijn F. J., Rossbach S.. ( 1998;). A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti . Microbiology144:2915–2924 [CrossRef][PubMed]
    [Google Scholar]
  8. Jiang G., Krishnan A. H., Kim Y. W., Wacek T. J., Krishnan H. B.. ( 2001;). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol183:2595–2604 [CrossRef][PubMed]
    [Google Scholar]
  9. Krings E., Krumbach K., Bathe B., Kelle R., Wendisch V. F., Sahm H., Eggeling L.. ( 2006;). Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on l-lysine formation. J Bacteriol188:8054–8061 [CrossRef][PubMed]
    [Google Scholar]
  10. Li G., Rauscher S., Baud S., Pomès R.. ( 2012;). Binding of inositol stereoisomers to model amyloidogenic peptides. J Phys Chem B116:1111–1119 [CrossRef][PubMed]
    [Google Scholar]
  11. Morinaga T., Ashida H., Yoshida K.. ( 2010a;). Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis . Microbiology156:1538–1546 [CrossRef][PubMed]
    [Google Scholar]
  12. Morinaga T., Matsuse T., Ashida H., Yoshida K.. ( 2010b;). Differential substrate specificity of two inositol transporters of Bacillus subtilis . Biosci Biotechnol Biochem74:1312–1314 [CrossRef][PubMed]
    [Google Scholar]
  13. Poole P. S., Blyth A., Reid C. J., Walters K.. ( 1994;). myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae . Microbiology140:2787–2795 [CrossRef]
    [Google Scholar]
  14. Ramaley R., Fujita Y., Freese E.. ( 1979;). Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem254:7684–7690[PubMed]
    [Google Scholar]
  15. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Takami H., Nishi S., Lu J., Shimamura S., Takaki Y.. ( 2004a;). Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles8:351–356 [CrossRef][PubMed]
    [Google Scholar]
  17. Takami H., Takaki Y., Chee G. J., Nishi S., Shimamura S., Suzuki H., Matsui S., Uchiyama I.. ( 2004b;). Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus . Nucleic Acids Res32:6292–6303 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  19. Turner B. L., Papházy M. J., Haygarth P. M., McKelvie I. D.. ( 2002;). Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci357:449–469 [CrossRef][PubMed]
    [Google Scholar]
  20. Vidal-Leiria M., van Uden N.. ( 1973;). Inositol dehydrogenase from the yeast Cryptococcus melibiosum . Biochim Biophys Acta293:295–303[PubMed][CrossRef]
    [Google Scholar]
  21. White R. H., Miller S. L.. ( 1976;). Inositol isomers: occurrence in marine sediments. Science193:885–886 [CrossRef][PubMed]
    [Google Scholar]
  22. Yamaoka M., Osawa S., Morinaga T., Takenaka S., Yoshida K.. ( 2011;). A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Microb Cell Fact10:69 [CrossRef][PubMed]
    [Google Scholar]
  23. Yebra M. J., Zúñiga M., Beaufils S., Pérez-Martínez G., Deutscher J., Monedero V.. ( 2007;). Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol73:3850–3858 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoshida K. I., Aoyama D., Ishio I., Shibayama T., Fujita Y.. ( 1997;). Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis . J Bacteriol179:4591–4598[PubMed]
    [Google Scholar]
  25. Yoshida K. I., Shibayama T., Aoyama D., Fujita Y.. ( 1999a;). Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J Mol Biol285:917–929 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoshida K., Fujita Y., Ehrlich S. D.. ( 1999b;). Three asparagine synthetase genes of Bacillus subtilis . J Bacteriol181:6081–6091[PubMed]
    [Google Scholar]
  27. Yoshida K., Yamamoto Y., Omae K., Yamamoto M., Fujita Y.. ( 2002;). Identification of two myo-inositol transporter genes of Bacillus subtilis . J Bacteriol184:983–991 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoshida K., Yamaguchi M., Ikeda H., Omae K., Tsurusaki K., Fujita Y.. ( 2004;). The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase. Microbiology150:571–580 [CrossRef][PubMed]
    [Google Scholar]
  29. Yoshida K., Yamaguchi M., Morinaga T., Ikeuchi M., Kinehara M., Ashida H.. ( 2006;). Genetic modification of Bacillus subtilis for production of d-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol72:1310–1315 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoshida K., Yamaguchi M., Morinaga T., Kinehara M., Ikeuchi M., Ashida H., Fujita Y.. ( 2008;). myo-Inositol catabolism in Bacillus subtilis . J Biol Chem283:10415–10424 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059980-0
Loading
/content/journal/micro/10.1099/mic.0.059980-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error