1887

Abstract

Chemoreceptors sense environmental stimuli and transmit the information to the flagellar motors via a histidine kinase that controls the phosphorylation level of the effector protein CheY. The cytoplasmic domain of chemoreceptors consists of a long α-helical hairpin that forms, in the dimer, a coiled-coil four-helix bundle. Even though the sequence and general structure of the cytoplasmic domain are strongly conserved within Eubacteria and Archaea, the total length of the α-helical hairpin is variable and defines seven classes of chemoreceptors. In this work we assessed the functional properties of a receptor when assembled in signalling complexes with proteins. Our results show that the foreign receptor does not confer fully chemotactic abilities upon cells, but is able to form active ternary complexes that respond to the specific stimuli by modulating the activity of the associated kinase. The observed responses are subject to adaptation, depending on the presence of the methylation enzymes CheR and/or CheB. The ability of foreign receptors to signal through signalling complexes with non-cognate proteins would allow the use of the well-studied system to reveal the detection specificity of uncharacterized chemoreceptors from other micro-organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059899-0
2012-09-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2283.html?itemId=/content/journal/micro/10.1099/mic.0.059899-0&mimeType=html&fmt=ahah

References

  1. Alexander R. P., Zhulin I. B.. ( 2007;). Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. . Proc Natl Acad Sci U S A 104:, 2885–2890. [CrossRef][PubMed]
    [Google Scholar]
  2. Alexandre G., Zhulin I. B.. ( 2003;). Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. . J Bacteriol 185:, 544–552. [CrossRef][PubMed]
    [Google Scholar]
  3. Ames P., Parkinson J. S.. ( 1994;). Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. . J Bacteriol 176:, 6340–6348.[PubMed]
    [Google Scholar]
  4. Ames P., Studdert C. A., Reiser R. H., Parkinson J. S.. ( 2002;). Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. . Proc Natl Acad Sci U S A 99:, 7060–7065. [CrossRef][PubMed]
    [Google Scholar]
  5. Baraquet C., Théraulaz L., Iobbi-Nivol C., Méjean V., Jourlin-Castelli C.. ( 2009;). Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis. . Mol Microbiol 73:, 278–290. [CrossRef][PubMed]
    [Google Scholar]
  6. Bibikov S. I., Miller A. C., Gosink K. K., Parkinson J. S.. ( 2004;). Methylation-independent aerotaxis mediated by the Escherichia coli Aer protein. . J Bacteriol 186:, 3730–3737. [CrossRef][PubMed]
    [Google Scholar]
  7. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S.. ( 1977;). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. . Gene 2:, 95–113. [CrossRef][PubMed]
    [Google Scholar]
  8. Briegel A., Ortega D. R., Tocheva E. I., Wuichet K., Li Z., Chen S., Müller A., Iancu C. V., Murphy G. E.. & other authors ( 2009;). Universal architecture of bacterial chemoreceptor arrays. . Proc Natl Acad Sci U S A 106:, 17181–17186. [CrossRef][PubMed]
    [Google Scholar]
  9. Briegel A., Li X., Bilwes A. M., Hughes K. T., Jensen G. J., Crane B. R.. ( 2012;). Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. . Proc Natl Acad Sci U S A 109:, 3766–3771. [CrossRef][PubMed]
    [Google Scholar]
  10. Cantwell B. J., Draheim R. R., Weart R. B., Nguyen C., Stewart R. C., Manson M. D.. ( 2003;). CheZ phosphatase localizes to chemoreceptor patches via CheA-short. . J Bacteriol 185:, 2354–2361. [CrossRef][PubMed]
    [Google Scholar]
  11. Chang A. C., Cohen S. N.. ( 1978;). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. . J Bacteriol 134:, 1141–1156.[PubMed]
    [Google Scholar]
  12. Hamblin P. A., Bourne N. A., Armitage J. P.. ( 1997;). Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. . Mol Microbiol 24:, 41–51. [CrossRef][PubMed]
    [Google Scholar]
  13. Hazelbauer G. L., Lai W. C.. ( 2010;). Bacterial chemoreceptors: providing enhanced features to two-component signaling. . Curr Opin Microbiol 13:, 124–132. [CrossRef][PubMed]
    [Google Scholar]
  14. Kehry M. R., Engström P., Dahlquist F. W., Hazelbauer G. L.. ( 1983;). Multiple covalent modifications of Trg, a sensory transducer of Escherichia coli. . J Biol Chem 258:, 5050–5055.[PubMed]
    [Google Scholar]
  15. Kim K. K., Yokota H., Kim S. H.. ( 1999;). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. . Nature 400:, 787–792. [CrossRef][PubMed]
    [Google Scholar]
  16. Lacal J., García-Fontana C., Muñoz-Martínez F., Ramos J. L., Krell T.. ( 2010;). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. . Environ Microbiol 12:, 2873–2884. [CrossRef][PubMed]
    [Google Scholar]
  17. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  18. Massazza D. A., Izzo S. A., Gasperotti A. F., Herrera Seitz M. K., Studdert C. A.. ( 2012;). Functional and structural effects of seven-residue deletions on the coiled-coil cytoplasmic domain of a chemoreceptor. . Mol Microbiol 83:, 224–239. [CrossRef][PubMed]
    [Google Scholar]
  19. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M.. & other authors ( 2002;). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. . Environ Microbiol 4:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  20. Park S. Y., Borbat P. P., Gonzalez-Bonet G., Bhatnagar J., Pollard A. M., Freed J. H., Bilwes A. M., Crane B. R.. ( 2006;). Reconstruction of the chemotaxis receptor-kinase assembly. . Nat Struct Mol Biol 13:, 400–407. [CrossRef][PubMed]
    [Google Scholar]
  21. Parkinson J. S.. ( 1976;). cheA, cheB, and cheC genes of Escherichia coli and their role in chemotaxis. . J Bacteriol 126:, 758–770.[PubMed]
    [Google Scholar]
  22. Parkinson J. S., Houts S. E.. ( 1982;). Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. . J Bacteriol 151:, 106–113.[PubMed]
    [Google Scholar]
  23. Schmidt J., Müsken M., Becker T., Magnowska Z., Bertinetti D., Möller S., Zimmermann B., Herberg F. W., Jänsch L., Häussler S.. ( 2011;). The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. . PLoS ONE 6:, e18184. [CrossRef][PubMed]
    [Google Scholar]
  24. Sourjik V., Berg H. C.. ( 2000;). Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. . Mol Microbiol 37:, 740–751. [CrossRef][PubMed]
    [Google Scholar]
  25. Studdert C. A., Parkinson J. S.. ( 2004;). Crosslinking snapshots of bacterial chemoreceptor squads. . Proc Natl Acad Sci U S A 101:, 2117–2122. [CrossRef][PubMed]
    [Google Scholar]
  26. Studdert C. A., Parkinson J. S.. ( 2005;). Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. . Proc Natl Acad Sci U S A 102:, 15623–15628. [CrossRef][PubMed]
    [Google Scholar]
  27. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H.. ( 1997;). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. . Microbiology 143:, 3223–3229. [CrossRef][PubMed]
    [Google Scholar]
  28. Watts K. J., Taylor B. L., Johnson M. S.. ( 2011;). PAS/poly-HAMP signalling in Aer-2, a soluble haem-based sensor. . Mol Microbiol 79:, 686–699. [CrossRef][PubMed]
    [Google Scholar]
  29. Wuichet K., Zhulin I. B.. ( 2010;). Origins and diversification of a complex signal transduction system in prokaryotes. . Sci Signal 3:, ra50. [CrossRef][PubMed]
    [Google Scholar]
  30. Yu H. S., Alam M.. ( 1997;). An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. . FEMS Microbiol Lett 156:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059899-0
Loading
/content/journal/micro/10.1099/mic.0.059899-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error