1887

Abstract

Protein-tyrosine phosphorylation plays a significant role in multiple cellular functions in bacteria. Bacterial tyrosine phosphatases catalyse the dephosphorylation of tyrosyl-phosphorylated proteins. PhpA shares homology with DNA polymerase and histidinol phosphatase family members. Recombinant His-tagged PhpA requires Mn or Co for phosphatase activity, and shows strict specificity for phosphorylated tyrosine residues. The values of PhpA for -nitrophenyl phosphate (NPP) and phosphotyrosine peptide, RRLIEDAEpYAARG, were 803 and 139 µM, respectively. The phosphatase activity of PhpA was inhibited by sodium orthovanadate with a of 33 µM. gene expression was observed under both vegetative and developmental conditions, but peaked during late fruiting body formation. A mutant exhibited an elevated level of tyrosine phosphorylation of a 79 kDa protein and cytoplasmic tyrosine kinase, BtkA. In , exopolysaccharide (EPS) is essential for cell–cell adhesion and fruiting body formation. mutant cells exhibited enhanced capacity for cell–cell agglutination in agglutination buffer. Under starvation conditions, mutation caused early aggregation and sporulation. The EPS production assay showed that the mutant produced an increased amount of EPS in comparison with the wild-type. These results indicate that PhpA may negatively regulate the production of EPS in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059824-0
2012-10-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2546.html?itemId=/content/journal/micro/10.1099/mic.0.059824-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Koonin E. V.. ( 1998;). Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res26:3746–3752 [CrossRef][PubMed]
    [Google Scholar]
  2. Bechet E., Guiral S., Torres S., Mijakovic I., Cozzone A. J., Grangeasse C.. ( 2009;). Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids37:499–507 [CrossRef][PubMed]
    [Google Scholar]
  3. Behmlander R. M., Dworkin M.. ( 1994;). Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus . J Bacteriol176:6295–6303[PubMed]
    [Google Scholar]
  4. Berleman J. E., Vicente J. J., Davis A. E., Jiang S. Y., Seo Y.-E., Zusman D. R.. ( 2011;). FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS ONE6:e23920 [CrossRef][PubMed]
    [Google Scholar]
  5. Bialojan C., Takai A.. ( 1988;). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J256:283–290[PubMed]
    [Google Scholar]
  6. Black W. P., Yang Z.. ( 2004;). Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol186:1001–1008 [CrossRef][PubMed]
    [Google Scholar]
  7. Black W. P., Xu Q., Yang Z.. ( 2006;). Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol Microbiol61:447–456 [CrossRef][PubMed]
    [Google Scholar]
  8. Black W. P., Schubot F. D., Li Z., Yang Z.. ( 2010;). Phosphorylation and dephosphorylation among Dif chemosensory proteins essential for exopolysaccharide regulation in Myxococcus xanthus . J Bacteriol192:4267–4274 [CrossRef][PubMed]
    [Google Scholar]
  9. Bowden M. G., Kaplan H. B.. ( 1998;). The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol30:275–284 [CrossRef][PubMed]
    [Google Scholar]
  10. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  11. Copeland R. A.. ( 1996;). Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis195–197 New York: VCH Publishers;
    [Google Scholar]
  12. Cozzone A. J., Grangeasse C., Doublet P., Duclos B.. ( 2004;). Protein phosphorylation on tyrosine in bacteria. Arch Microbiol181:171–181 [CrossRef][PubMed]
    [Google Scholar]
  13. Dabour N., LaPointe G.. ( 2005;). Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol71:7414–7425 [CrossRef][PubMed]
    [Google Scholar]
  14. Dana J. R., Shimkets L. J.. ( 1993;). Regulation of cohesion-dependent cell interactions in Myxococcus xanthus . J Bacteriol175:3636–3647[PubMed]
    [Google Scholar]
  15. Doublet P., Grangeasse C., Obadia B., Vaganay E., Cozzone A. J.. ( 2002;). Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem277:37339–37348 [CrossRef][PubMed]
    [Google Scholar]
  16. DuBois K., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F.. ( 1956;). Colorimetric method for determination of sugars and related substances. Anal Chem28:350–356 [CrossRef]
    [Google Scholar]
  17. Dworkin M., Gibson S. M.. ( 1964;). A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus . Science146:243–244 [CrossRef][PubMed]
    [Google Scholar]
  18. Grangeasse C., Obadia B., Mijakovic I., Deutscher J., Cozzone A. J., Doublet P.. ( 2003;). Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem278:39323–39329 [CrossRef][PubMed]
    [Google Scholar]
  19. Grangeasse C., Cozzone A. J., Deutscher J., Mijakovic I.. ( 2007;). Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci32:86–94 [CrossRef][PubMed]
    [Google Scholar]
  20. Hagelueken G., Huang H., Mainprize I. L., Whitfield C., Naismith J. H.. ( 2009;). Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J Mol Biol392:678–688 [CrossRef][PubMed]
    [Google Scholar]
  21. Hagen C. D., Bretscher P. A., Kaiser D.. ( 1978;). Synergism between morphogenic mutants of Myxococcus xanthus . Dev Biol64:284–296 [CrossRef]
    [Google Scholar]
  22. Hodgkin J., Kaiser D.. ( 1979a;). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet171:167–176 [CrossRef]
    [Google Scholar]
  23. Hodgkin J., Kaiser D.. ( 1979b;). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet171:177–191 [CrossRef]
    [Google Scholar]
  24. Huyer G., Lin S., Kelly J., Moffat J., Payette P., Kennedy B., Tsapralisis C., Gresser M. J., Ramachandran C.. ( 1997;). Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem272:843–851[PubMed][CrossRef]
    [Google Scholar]
  25. Jaumot M., Hancock J. F.. , ( 2001;). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene20:3949–3958 [CrossRef][PubMed]
    [Google Scholar]
  26. Kamibayashi C., Estes R., Slaughter C., Mumby M. C.. ( 1991;). Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. J Biol Chem266:13251–13260[PubMed]
    [Google Scholar]
  27. Kim H. S., Lee S. J., Yoon H. J., An D. R., Kim J., Kim S. J., Suh S. W.. ( 2011;). Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases. J Struct Biol175:442–450 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura Y., Ishida S., Matoba H., Okahisa N.. ( 2004;). RppA, a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus . Microbiology150:631–639 [CrossRef][PubMed]
    [Google Scholar]
  29. Kimura Y., Yamashita S., Mori Y., Kitajima Y., Takegawa K.. ( 2011;). A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol193:5853–5857 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura Y., Kato T., Mori Y.. ( 2012;). Function analysis of a bacterial tyrosine kinase, BtkB, in Myxococcus xanthus . FEMS Microbiol Lett [CrossRef][PubMed]
    [Google Scholar]
  31. LaPointe G., Atlan D., Gilbert C.. ( 2008;). Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus . BMC Biochem9:10–21 [CrossRef][PubMed]
    [Google Scholar]
  32. Mijakovic I., Poncet S., Boël G., Mazé A., Gillet S., Jamet E., Decottignies P., Grangeasse C., Doublet P.. & other authors ( 2003;). Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J22:4709–4718 [CrossRef][PubMed]
    [Google Scholar]
  33. Mijakovic I., Musumeci L., Tautz L., Petranovic D., Edwards R. A., Jensen P. R., Mustelin T., Deutscher J., Bottini N.. ( 2005;). In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE. J Bacteriol187:3384–3390 [CrossRef][PubMed]
    [Google Scholar]
  34. Minic Z., Marie C., Delorme C., Faurie J.-M., Mercier G., Ehrlich D., Renault P.. ( 2007;). Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J Bacteriol189:1351–1357 [CrossRef][PubMed]
    [Google Scholar]
  35. Morona J. K., Morona R., Miller D. C., Paton J. C.. ( 2002;). Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol184:577–583 [CrossRef][PubMed]
    [Google Scholar]
  36. Morona J. K., Morona R., Paton J. C.. ( 2006;). Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc Natl Acad Sci U S A103:8505–8510 [CrossRef][PubMed]
    [Google Scholar]
  37. Müller F. D., Schink C. W., Hoiczyk E., Cserti E., Higgs P. I.. ( 2012;). Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol83:486–505 [CrossRef][PubMed]
    [Google Scholar]
  38. Paiment A., Hocking J., Whitfield C.. ( 2002;). Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli . J Bacteriol184:6437–6447 [CrossRef][PubMed]
    [Google Scholar]
  39. Petters T., Zhang X., Nesper J., Treuner-Lange A., Gomez-Santos N., Hoppert M., Jenal U., Søgaard-Andersen L.. ( 2012;). The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus . Mol Microbiol84:147–165 [CrossRef][PubMed]
    [Google Scholar]
  40. Plamann L., Kuspa A., Kaiser D.. ( 1992;). The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol174:3311–3318[PubMed]
    [Google Scholar]
  41. Shi Y.. ( 2009;). Serine/threonine phosphatases: mechanism through structure. Cell139:468–484 [CrossRef][PubMed]
    [Google Scholar]
  42. Shi L., Kobir A., Jers C., Mijakovic I.. ( 2010;). Bacterial protein–tyrosine kinases. Curr Proteomics7:188–194 [CrossRef]
    [Google Scholar]
  43. Velicer G. J., Vos M.. ( 2009;). Sociobiology of the myxobacteria. Annu Rev Microbiol63:599–623 [CrossRef][PubMed]
    [Google Scholar]
  44. Vincent C., Doublet P., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B.. ( 1999;). Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol181:3472–3477[PubMed]
    [Google Scholar]
  45. Weimer R. M., Creighton C., Stassinopoulos A., Youderian P., Hartzell P. L.. ( 1998;). A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus . J Bacteriol180:5357–5368[PubMed]
    [Google Scholar]
  46. Whitworth D. E.. ( 2007;). Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Wu S. S., Kaiser D.. ( 1995;). Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus . Mol Microbiol18:547–558 [CrossRef][PubMed]
    [Google Scholar]
  48. Wu S. S., Wu J., Kaiser D.. ( 1997;). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol23:109–121 [CrossRef][PubMed]
    [Google Scholar]
  49. Zusman D. R., Scott A. E., Yang Z., Kirby J. R.. ( 2007;). Chemosensory pathways, motility and development in Myxococcus xanthus . Nat Rev Microbiol5:862–872 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059824-0
Loading
/content/journal/micro/10.1099/mic.0.059824-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error