1887

Abstract

Protein-tyrosine phosphorylation plays a significant role in multiple cellular functions in bacteria. Bacterial tyrosine phosphatases catalyse the dephosphorylation of tyrosyl-phosphorylated proteins. PhpA shares homology with DNA polymerase and histidinol phosphatase family members. Recombinant His-tagged PhpA requires Mn or Co for phosphatase activity, and shows strict specificity for phosphorylated tyrosine residues. The values of PhpA for -nitrophenyl phosphate (NPP) and phosphotyrosine peptide, RRLIEDAEpYAARG, were 803 and 139 µM, respectively. The phosphatase activity of PhpA was inhibited by sodium orthovanadate with a of 33 µM. gene expression was observed under both vegetative and developmental conditions, but peaked during late fruiting body formation. A mutant exhibited an elevated level of tyrosine phosphorylation of a 79 kDa protein and cytoplasmic tyrosine kinase, BtkA. In , exopolysaccharide (EPS) is essential for cell–cell adhesion and fruiting body formation. mutant cells exhibited enhanced capacity for cell–cell agglutination in agglutination buffer. Under starvation conditions, mutation caused early aggregation and sporulation. The EPS production assay showed that the mutant produced an increased amount of EPS in comparison with the wild-type. These results indicate that PhpA may negatively regulate the production of EPS in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059824-0
2012-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/10/2546.html?itemId=/content/journal/micro/10.1099/mic.0.059824-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Koonin E. V. ( 1998). Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752 [View Article][PubMed]
    [Google Scholar]
  2. Bechet E., Guiral S., Torres S., Mijakovic I., Cozzone A. J., Grangeasse C. ( 2009). Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids 37:499–507 [View Article][PubMed]
    [Google Scholar]
  3. Behmlander R. M., Dworkin M. ( 1994). Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus . J Bacteriol 176:6295–6303[PubMed]
    [Google Scholar]
  4. Berleman J. E., Vicente J. J., Davis A. E., Jiang S. Y., Seo Y.-E., Zusman D. R. ( 2011). FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS ONE 6:e23920 [View Article][PubMed]
    [Google Scholar]
  5. Bialojan C., Takai A. ( 1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290[PubMed]
    [Google Scholar]
  6. Black W. P., Yang Z. ( 2004). Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186:1001–1008 [View Article][PubMed]
    [Google Scholar]
  7. Black W. P., Xu Q., Yang Z. ( 2006). Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol Microbiol 61:447–456 [View Article][PubMed]
    [Google Scholar]
  8. Black W. P., Schubot F. D., Li Z., Yang Z. ( 2010). Phosphorylation and dephosphorylation among Dif chemosensory proteins essential for exopolysaccharide regulation in Myxococcus xanthus . J Bacteriol 192:4267–4274 [View Article][PubMed]
    [Google Scholar]
  9. Bowden M. G., Kaplan H. B. ( 1998). The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30:275–284 [View Article][PubMed]
    [Google Scholar]
  10. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  11. Copeland R. A. ( 1996). Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis195–197 New York: VCH Publishers;
    [Google Scholar]
  12. Cozzone A. J., Grangeasse C., Doublet P., Duclos B. ( 2004). Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181:171–181 [View Article][PubMed]
    [Google Scholar]
  13. Dabour N., LaPointe G. ( 2005). Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol 71:7414–7425 [View Article][PubMed]
    [Google Scholar]
  14. Dana J. R., Shimkets L. J. ( 1993). Regulation of cohesion-dependent cell interactions in Myxococcus xanthus . J Bacteriol 175:3636–3647[PubMed]
    [Google Scholar]
  15. Doublet P., Grangeasse C., Obadia B., Vaganay E., Cozzone A. J. ( 2002). Structural organization of the protein-tyrosine autokinase Wzc within Escherichia coli cells. J Biol Chem 277:37339–37348 [View Article][PubMed]
    [Google Scholar]
  16. DuBois K., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. ( 1956). Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 [View Article]
    [Google Scholar]
  17. Dworkin M., Gibson S. M. ( 1964). A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus . Science 146:243–244 [View Article][PubMed]
    [Google Scholar]
  18. Grangeasse C., Obadia B., Mijakovic I., Deutscher J., Cozzone A. J., Doublet P. ( 2003). Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278:39323–39329 [View Article][PubMed]
    [Google Scholar]
  19. Grangeasse C., Cozzone A. J., Deutscher J., Mijakovic I. ( 2007). Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86–94 [View Article][PubMed]
    [Google Scholar]
  20. Hagelueken G., Huang H., Mainprize I. L., Whitfield C., Naismith J. H. ( 2009). Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J Mol Biol 392:678–688 [View Article][PubMed]
    [Google Scholar]
  21. Hagen C. D., Bretscher P. A., Kaiser D. ( 1978). Synergism between morphogenic mutants of Myxococcus xanthus . Dev Biol 64:284–296 [View Article]
    [Google Scholar]
  22. Hodgkin J., Kaiser D. ( 1979a). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171:167–176 [View Article]
    [Google Scholar]
  23. Hodgkin J., Kaiser D. ( 1979b). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet 171:177–191 [View Article]
    [Google Scholar]
  24. Huyer G., Lin S., Kelly J., Moffat J., Payette P., Kennedy B., Tsapralisis C., Gresser M. J., Ramachandran C. ( 1997). Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851[PubMed] [CrossRef]
    [Google Scholar]
  25. Jaumot M., Hancock J. F. , ( 2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20:3949–3958 [View Article][PubMed]
    [Google Scholar]
  26. Kamibayashi C., Estes R., Slaughter C., Mumby M. C. ( 1991). Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. J Biol Chem 266:13251–13260[PubMed]
    [Google Scholar]
  27. Kim H. S., Lee S. J., Yoon H. J., An D. R., Kim J., Kim S. J., Suh S. W. ( 2011). Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases. J Struct Biol 175:442–450 [View Article][PubMed]
    [Google Scholar]
  28. Kimura Y., Ishida S., Matoba H., Okahisa N. ( 2004). RppA, a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus . Microbiology 150:631–639 [View Article][PubMed]
    [Google Scholar]
  29. Kimura Y., Yamashita S., Mori Y., Kitajima Y., Takegawa K. ( 2011). A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 193:5853–5857 [View Article][PubMed]
    [Google Scholar]
  30. Kimura Y., Kato T., Mori Y. ( 2012). Function analysis of a bacterial tyrosine kinase, BtkB, in Myxococcus xanthus . FEMS Microbiol Lett [View Article][PubMed]
    [Google Scholar]
  31. LaPointe G., Atlan D., Gilbert C. ( 2008). Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus . BMC Biochem 9:10–21 [View Article][PubMed]
    [Google Scholar]
  32. Mijakovic I., Poncet S., Boël G., Mazé A., Gillet S., Jamet E., Decottignies P., Grangeasse C., Doublet P. & other authors ( 2003). Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22:4709–4718 [View Article][PubMed]
    [Google Scholar]
  33. Mijakovic I., Musumeci L., Tautz L., Petranovic D., Edwards R. A., Jensen P. R., Mustelin T., Deutscher J., Bottini N. ( 2005). In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE. J Bacteriol 187:3384–3390 [View Article][PubMed]
    [Google Scholar]
  34. Minic Z., Marie C., Delorme C., Faurie J.-M., Mercier G., Ehrlich D., Renault P. ( 2007). Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J Bacteriol 189:1351–1357 [View Article][PubMed]
    [Google Scholar]
  35. Morona J. K., Morona R., Miller D. C., Paton J. C. ( 2002). Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184:577–583 [View Article][PubMed]
    [Google Scholar]
  36. Morona J. K., Morona R., Paton J. C. ( 2006). Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc Natl Acad Sci U S A 103:8505–8510 [View Article][PubMed]
    [Google Scholar]
  37. Müller F. D., Schink C. W., Hoiczyk E., Cserti E., Higgs P. I. ( 2012). Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 83:486–505 [View Article][PubMed]
    [Google Scholar]
  38. Paiment A., Hocking J., Whitfield C. ( 2002). Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli . J Bacteriol 184:6437–6447 [View Article][PubMed]
    [Google Scholar]
  39. Petters T., Zhang X., Nesper J., Treuner-Lange A., Gomez-Santos N., Hoppert M., Jenal U., Søgaard-Andersen L. ( 2012). The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus . Mol Microbiol 84:147–165 [View Article][PubMed]
    [Google Scholar]
  40. Plamann L., Kuspa A., Kaiser D. ( 1992). The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 174:3311–3318[PubMed]
    [Google Scholar]
  41. Shi Y. ( 2009). Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484 [View Article][PubMed]
    [Google Scholar]
  42. Shi L., Kobir A., Jers C., Mijakovic I. ( 2010). Bacterial protein–tyrosine kinases. Curr Proteomics 7:188–194 [View Article]
    [Google Scholar]
  43. Velicer G. J., Vos M. ( 2009). Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599–623 [View Article][PubMed]
    [Google Scholar]
  44. Vincent C., Doublet P., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B. ( 1999). Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477[PubMed]
    [Google Scholar]
  45. Weimer R. M., Creighton C., Stassinopoulos A., Youderian P., Hartzell P. L. ( 1998). A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus . J Bacteriol 180:5357–5368[PubMed]
    [Google Scholar]
  46. Whitworth D. E. ( 2007). Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Wu S. S., Kaiser D. ( 1995). Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus . Mol Microbiol 18:547–558 [View Article][PubMed]
    [Google Scholar]
  48. Wu S. S., Wu J., Kaiser D. ( 1997). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23:109–121 [View Article][PubMed]
    [Google Scholar]
  49. Zusman D. R., Scott A. E., Yang Z., Kirby J. R. ( 2007). Chemosensory pathways, motility and development in Myxococcus xanthus . Nat Rev Microbiol 5:862–872 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059824-0
Loading
/content/journal/micro/10.1099/mic.0.059824-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error