1887

Abstract

, originally isolated from honeybee intestine, was found to grow under 20 % O conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O and grown in medium containing a haem source, and these cells showed higher viability on exposure to HO. Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of . Expression of the gene was induced in response to O exposure. The haem catalase from shows about 70–80 % identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059741-0
2013-01-01
2020-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/89.html?itemId=/content/journal/micro/10.1099/mic.0.059741-0&mimeType=html&fmt=ahah

References

  1. Abriouel H., Herrmann A., Stärke J., Yousif N. M., Wijaya A., Tauscher B., Holzapfel W., Franz C. M.. ( 2004;). Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl Environ Microbiol70:603–606 [CrossRef][PubMed]
    [Google Scholar]
  2. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  3. de Vries W., Stouthamer A. H.. ( 1969;). Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Mikrobiol65:275–287 [CrossRef][PubMed]
    [Google Scholar]
  4. Dos Santos W. G., Pacheco I., Liu M. Y., Teixeira M., Xavier A. V., LeGall J.. ( 2000;). Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas . J Bacteriol182:796–804 [CrossRef][PubMed]
    [Google Scholar]
  5. Frankenberg L., Brugna M., Hederstedt L.. ( 2002;). Enterococcus faecalis heme-dependent catalase. J Bacteriol184:6351–6356[PubMed][CrossRef]
    [Google Scholar]
  6. Jones D., Collins M. D.. ( 1986;). Irregular, nonsporing Gram-positive rods. Bergey’s Manual of Systematic Bacteriology1261–1434 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.. Baltimore: Williams and Wilkins Co;
    [Google Scholar]
  7. Kawasaki S.. ( 2011;). Response of Bifidobacterium species to oxygen. Lactic Acid Bacteria and Bifidobacteria103–110 Sonomoto K., Yokota A.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  8. Kawasaki S., Watamura Y., Ono M., Watanabe T., Takeda K., Niimura Y.. ( 2005;). Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum . Appl Environ Microbiol71:8442–8450 [CrossRef][PubMed]
    [Google Scholar]
  9. Kawasaki S., Mimura T., Satoh T., Takeda K., Niimura Y.. ( 2006;). Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol72:6854–6858 [CrossRef][PubMed]
    [Google Scholar]
  10. Kawasaki S., Nagasaku M., Mimura T., Katashima H., Ijyuin S., Satoh T., Niimura Y.. ( 2007;). Effect of CO2 on colony development by Bifidobacterium species. Appl Environ Microbiol73:7796–7798 [CrossRef][PubMed]
    [Google Scholar]
  11. Kawasaki S., Satoh T., Todoroki M., Niimura Y.. ( 2009;). b-Type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum . Appl Environ Microbiol75:629–636 [CrossRef][PubMed]
    [Google Scholar]
  12. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J.. ( 2009;). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  13. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T.. ( 2011;). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol61:1315–1321[PubMed][CrossRef]
    [Google Scholar]
  14. Knauf H. J., Vogel R. F., Hammes W. P.. ( 1992;). Cloning, sequence and phenotype expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol58:832–839[PubMed]
    [Google Scholar]
  15. Meile L., Ludwig W., Rueger U., Gut C., Kaufmann P., Dasen G., Wenger S., Teuber M.. ( 1997;). Bifidobacterium lactis sp. nov., a moderately oxygen-tolerant species isolated from fermented milk. Syst Appl Microbiol20:57–64[PubMed][CrossRef]
    [Google Scholar]
  16. Mozzetti V., Grattepanche F., Moine D., Berger B., Rezzonico E., Meile L., Arigoni F., Lacroix C.. ( 2010;). New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology. Microb Cell Fact9:60 [CrossRef][PubMed]
    [Google Scholar]
  17. Rocha E. R., Smith C. J.. ( 1995;). Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis . J Bacteriol177:3111–3119[PubMed]
    [Google Scholar]
  18. Scardovi V., Trovatelli L. D.. ( 1969;). New species of bifido bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg123:64–88[PubMed]
    [Google Scholar]
  19. Shimamura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Tomita M.. ( 1990;). Endogenous oxygen uptake and polysaccharide accumulation in Bifidobacterium . Agric Biol Chem54:2869–2874 [CrossRef]
    [Google Scholar]
  20. Shimamura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Araya T., Tomita M.. ( 1992;). Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci75:3296–3306 [CrossRef][PubMed]
    [Google Scholar]
  21. Simpson P. J., Ross R. P., Fitzgerald G. F., Stanton C.. ( 2004;). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol54:401–406 [CrossRef][PubMed]
    [Google Scholar]
  22. Simpson P. J., Stanton C., Fitzgerald G. F., Ross R. P.. ( 2005;). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol99:493–501 [CrossRef][PubMed]
    [Google Scholar]
  23. Switala J., Loewen P. C.. ( 2002;). Diversity of properties among catalases. Arch Biochem Biophys401:145–154 [CrossRef][PubMed]
    [Google Scholar]
  24. Whittenbury R.. ( 1964;). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Microbiol35:13–26 [CrossRef][PubMed]
    [Google Scholar]
  25. Wolf G., Hammes W. P.. ( 1988;). Effect of hematin on the activities of nitrite reductase and catalase in lactobacilli. Arch Microbiol149:220–224 [CrossRef]
    [Google Scholar]
  26. Wolf G., Strahl A., Meisel J., Hammes W. P.. ( 1991;). Heme-dependent catalase activity of lactobacilli. Int J Food Microbiol12:133–140[PubMed][CrossRef]
    [Google Scholar]
  27. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059741-0
Loading
/content/journal/micro/10.1099/mic.0.059741-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error