1887

Abstract

The gene designated BAB1_0591 in the 2308 genome sequence encodes the manganese-cofactored superoxide dismutase SodA. An isogenic mutant derived from 2308, designated JB12, displays a small colony phenotype, increased sensitivity to endogenous superoxide generators, hydrogen peroxide and exposure to acidic pH, and a lag in growth when cultured in rich and minimal media that can be rescued by the addition of all 20 amino acids to the growth medium. JB12 exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, but this attenuation is limited to the early stages of infection. Addition of the NADPH oxidase inhibitor apocynin to infected macrophages does not alleviate the attenuation exhibited by JB12, suggesting that the basis for the attenuation of the mutant is not an increased sensitivity to exogenous superoxide generated through the oxidative burst of host phagocytes. It is possible, however, that the increased sensitivity of the mutant to acid makes it less resistant than the parental strain to killing by the low pH encountered during the early stages of the development of the brucella-containing vacuoles in macrophages. These experimental findings support the proposed role for SodA as a major cytoplasmic antioxidant in brucella. Although this enzyme provides a clear benefit to 2308 during the early stages of infection in macrophages and mice, SodA appears to be dispensable once the brucellae have established an infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059584-0
2012-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1767.html?itemId=/content/journal/micro/10.1099/mic.0.059584-0&mimeType=html&fmt=ahah

References

  1. Alcantara R. B., Read R. D. A., Valderas M. W., Brown T. D., Roop R. M. II ( 2004). Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun 72:4911–4917 [View Article][PubMed]
    [Google Scholar]
  2. Anderson E. S., Paulley J. T., Gaines J. M., Valderas M. W., Martin D. W., Menscher E., Brown T. D., Burns C. S., Roop R. M. II ( 2009). The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77:3466–3474 [View Article][PubMed]
    [Google Scholar]
  3. Beck B. L., Tabatabai L. B., Mayfield J. E. ( 1990). A protein isolated from Brucella abortus is a copper-zinc superoxide dismutase. Biochemistry 29:372–376 [View Article][PubMed]
    [Google Scholar]
  4. Boschiroli M. L., Ouahrani-Bettache S., Foulongne V., Michaux-Charachon S., Bourg G., Allardet-Servent A., Cazevieille C., Liautard J. P., Ramuz M., O’Callaghan D. ( 2002). The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 99:1544–1549 [View Article][PubMed]
    [Google Scholar]
  5. Bricker B. J., Tabatabai L. B., Judge B. A., Deyoe B. L., Mayfield J. E. ( 1990). Cloning, expression, and occurrence of the Brucella Cu-Zn superoxide dismutase. Infect Immun 58:2935–2939[PubMed]
    [Google Scholar]
  6. Brown O. R., Smyk-Randall E., Draczynska-Lusiak B., Fee J. A. ( 1995). Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli: effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch Biochem Biophys 319:10–22 [View Article][PubMed]
    [Google Scholar]
  7. Cadenas E., Boveris A., Ragan C. I., Stoppani A. O. ( 1977). Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257 [View Article][PubMed]
    [Google Scholar]
  8. Carlioz A., Touati D. ( 1986). Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. EMBO J 5:623–630[PubMed]
    [Google Scholar]
  9. Celli J., de Chastellier C., Franchini D.-M., Pizarro-Cerda J., Moreno E., Gorvel J.-P. ( 2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556 [View Article][PubMed]
    [Google Scholar]
  10. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., Fang F. C. ( 1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997–14001 [View Article][PubMed]
    [Google Scholar]
  11. Dunn K. L., Farrant J. L., Langford P. R., Kroll J. S. ( 2003). Bacterial [Cu,Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitidis from phagocytosis by human monocytes/macrophages. Infect Immun 71:1604–1607 [View Article][PubMed]
    [Google Scholar]
  12. Elzer P. H., Phillips R. W., Kovach M. E., Peterson K. M., Roop R. M. II ( 1994). Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A (htrA) deletion mutant. Infect Immun 62:4135–4139[PubMed]
    [Google Scholar]
  13. Endley S., McMurray D., Ficht T. A. ( 2001). Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183:2454–2462 [View Article][PubMed]
    [Google Scholar]
  14. Farrington J. A., Ebert M., Land E. J., Fletcher K. ( 1973). Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim Biophys Acta 314:372–381 [View Article][PubMed]
    [Google Scholar]
  15. Foulongne V., Bourg G., Cazevieille C., Michaux-Charachon S., O’Callaghan D. ( 2000). Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303 [View Article][PubMed]
    [Google Scholar]
  16. Gardner P. R., Fridovich I. ( 1991). Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333[PubMed]
    [Google Scholar]
  17. Gee J. M., Valderas M. W., Kovach M. E., Grippe V. K., Robertson G. T., Ng W.-L., Richardson J. M., Winkler M. E., Roop R. M. II ( 2005). The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73:2873–2880 [View Article][PubMed]
    [Google Scholar]
  18. Haine V., Dozot M., Dornand J., Letesson J. J., De Bolle X. ( 2006). NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 188:1615–1619 [View Article][PubMed]
    [Google Scholar]
  19. Hart B. A., Simons J. M. ( 1992). Metabolic activation of phenols by stimulated neutrophils: a concept for a selective type of anti-inflammatory drug. Biotechnol Ther 3:119–135[PubMed]
    [Google Scholar]
  20. Hassan H. M., Fridovich I. ( 1979). Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395 [View Article][PubMed]
    [Google Scholar]
  21. Imlay J. A. ( 2003). Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [View Article][PubMed]
    [Google Scholar]
  22. Imlay J. A. ( 2006). Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082 [View Article][PubMed]
    [Google Scholar]
  23. Imlay J. A. ( 2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776 [View Article][PubMed]
    [Google Scholar]
  24. Jiménez de Bagüés M. P., Loisel-Meyer S., Liautard J. P., Jubier-Maurin V. ( 2007). Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: Cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice. Infect Immun 75:531–535 [View Article][PubMed]
    [Google Scholar]
  25. Keyer K., Gort A. S., Imlay J. A. ( 1995). Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790[PubMed]
    [Google Scholar]
  26. Kim J.-S., Sung M.-H., Kho D.-H., Lee J. K. ( 2005). Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus . J Bacteriol 187:5984–5995 [View Article][PubMed]
    [Google Scholar]
  27. Köhler S., Foulongne V., Ouahrani-Bettache S., Bourg G., Teyssier J., Ramuz M., Liautard J. P. ( 2002). The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 99:15711–15716 [View Article][PubMed]
    [Google Scholar]
  28. Kuo C. F., Mashino T., Fridovich I. ( 1987). α,β-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J Biol Chem 262:4724–4727[PubMed]
    [Google Scholar]
  29. Lestrate P., Dricot A., Delrue R.-M., Lambert C., Martinelli V., De Bolle X., Letesson J.-J., Tibor A. ( 2003). Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun 71:7053–7060 [View Article][PubMed]
    [Google Scholar]
  30. Liochev S. I., Fridovich I. ( 1993). Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch Biochem Biophys 301:379–384 [View Article][PubMed]
    [Google Scholar]
  31. Loisel-Meyer S., Jiménez de Bagüés M. P., Bassères E., Dornand J., Köhler S., Liautard J. P., Jubier-Maurin V. ( 2006). Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun 74:1973–1976 [View Article][PubMed]
    [Google Scholar]
  32. López-Goñi I., Moriyón I., Neilands J. B. ( 1992). Identification of 2,3-dihydroxybenzoic acid as a Brucella abortus siderophore. Infect Immun 60:4496–4503[PubMed]
    [Google Scholar]
  33. Lynch M., Kuramitsu H. ( 2000). Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect 2:1245–1255 [View Article][PubMed]
    [Google Scholar]
  34. Marklund S., Marklund G. ( 1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474 [View Article][PubMed]
    [Google Scholar]
  35. Ménard R., Sansonetti P. J., Parsot C. ( 1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906[PubMed]
    [Google Scholar]
  36. Piddington D. L., Fang F. C., Laessig T., Cooper A. M., Orme I. M., Buchmeier N. A. ( 2001). Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987 [View Article][PubMed]
    [Google Scholar]
  37. Porte F., Liautard J. P., Köhler S. ( 1999). Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047[PubMed]
    [Google Scholar]
  38. Poyart C., Pellegrini E., Gaillot O., Boumaila C., Baptista M., Trieu-Cuot P. ( 2001). Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae . Infect Immun 69:5098–5106 [View Article][PubMed]
    [Google Scholar]
  39. Roop R. M. II, Gee J. M., Robertson G. T., Richardson J. M., Ng W.-L., Winkler M. E. ( 2003). Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57:57–76[PubMed] [CrossRef]
    [Google Scholar]
  40. Roop R. M. II, Gaines J. M., Anderson E. S., Caswell C. C., Martin D. W. ( 2009). Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol (Berl) 198:221–238 [View Article][PubMed]
    [Google Scholar]
  41. Rosner B. ( 2000). Fundamentals of Biostatistics, 5th edn. Pacific Grove, CA: Duxbury;
    [Google Scholar]
  42. Sadosky A. B., Wilson J. W., Steinman H. M., Shuman H. A. ( 1994). The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol 176:3790–3799[PubMed]
    [Google Scholar]
  43. Sriranganathan N., Boyle S. M., Schurig G., Misra H. ( 1991). Superoxide dismutases of virulent and avirulent strains of Brucella abortus . Vet Microbiol 26:359–366 [View Article][PubMed]
    [Google Scholar]
  44. St John G., Steinman H. M. ( 1996). Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J Bacteriol 178:1578–1584[PubMed]
    [Google Scholar]
  45. Stabel T. J., Sha Z., Mayfield J. E. ( 1994). Periplasmic location of Brucella abortus Cu/Zn superoxide dismutase. Vet Microbiol 38:307–314 [View Article][PubMed]
    [Google Scholar]
  46. Steele K. H., Baumgartner J. E., Valderas M. W., Roop R. M. II ( 2010). Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol 192:4912–4922 [View Article][PubMed]
    [Google Scholar]
  47. Valderas M. W., Alcantara R. B., Baumgartner J. E., Bellaire B. H., Robertson G. T., Ng W.-L., Richardson J. M., Winkler M. E., Roop R. M. II ( 2005). Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 107:307–312 [View Article][PubMed]
    [Google Scholar]
  48. Varghese S., Tang Y., Imlay J. A. ( 2003). Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 185:221–230 [View Article][PubMed]
    [Google Scholar]
  49. Woods S. A., Schwartzbach S. D., Guest J. R. ( 1988). Two biochemically distinct classes of fumarase in Escherichia coli . Biochim Biophys Acta 954:14–26 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059584-0
Loading
/content/journal/micro/10.1099/mic.0.059584-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error