1887

Abstract

A previously identified sterol catabolic gene cluster is widely dispersed among actinobacteria, enabling them to degrade and grow on naturally occurring sterols. We investigated the physiological roles of various genes by targeted inactivation in mutant RG32 of , which selectively degrades sterol side-chains. The and deletion mutants were each completely blocked in side-chain degradation of β-sitosterol and campesterol, but not of cholesterol. These results indicated a role for and in the removal of C24 branches specifically. Bioinformatic analysis of the encoded Ltp3 and Ltp4 proteins revealed relatively high similarity to thiolase enzymes, typically involved in β-oxidation, but the catalytic residues characteristic for thiolase enzymes are not conserved in their amino acid sequences. Removal of the C24-branched side-chain carbons of β-sitosterol was previously shown to proceed via aldolytic cleavage rather than by β-oxidation. Our results therefore suggest that and probably encode aldol-lyases rather than thiolases. This is the first report, to our knowledge, on the molecular characterization of genes with specific and essential roles in carbon–carbon bond cleavage of C24-branched chain sterols in strains, most likely acting as aldol-lyases. The results are a clear contribution to our understanding of sterol degradation in actinobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059501-0
2012-12-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3054.html?itemId=/content/journal/micro/10.1099/mic.0.059501-0&mimeType=html&fmt=ahah

References

  1. Ambrus G., Ilköy E., Jekkel A., Horváth G., Böcskei Z.. ( 1995;). Microbial transformation of β-sitosterol and stigmasterol into 26-oxygenated derivatives. Steroids60:621–625 [CrossRef][PubMed]
    [Google Scholar]
  2. Arima K., Nagasawa M., Bae M., Tamura M.. ( 1969;). Microbial transformation of sterols. Part I. Decomposition of cholesterol by microorganisms. Agric Biol Chem33:1636–1643 [CrossRef]
    [Google Scholar]
  3. Bekal S., Van Beeumen J., Samyn B., Garmyn D., Henini S., Diviès C., Prévost H.. ( 1998;). Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster. J Bacteriol180:647–654[PubMed]
    [Google Scholar]
  4. Brooks C. J. W.. ( 1979;). Some aspects of mass spectrometry in research on steroids. Philos Trans R Soc Lond Ser A293:53–67 [CrossRef]
    [Google Scholar]
  5. Capyk J. K., Kalscheuer R., Stewart G. R., Liu J., Kwon H., Zhao R., Okamoto S., Jacobs W. R. Jr, Eltis L. D., Mohn W. W.. ( 2009;). Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem284:35534–35542 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen C. S.. ( 1985;). The mechanism of degradation of side chains of phytosterols by microorganisms
    [Google Scholar]
  7. Dodson R. M., Muir R. D.. ( 1958a;). Microbiological transformations. II. The microbiological aromatization of steroids. J Am Chem Soc80:5004–5005 [CrossRef]
    [Google Scholar]
  8. Dodson R. M., Muir R. D.. ( 1958b;). Microbiological transformations. III. The hydroxylation of steroids at C-9. J Am Chem Soc80:6148 [CrossRef]
    [Google Scholar]
  9. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R., Ceric G., Forslund K., Eddy S. R.. & other authors ( 2008;). The Pfam protein families database. Nucleic Acids Res36:Database issueD281–D288 [CrossRef][PubMed]
    [Google Scholar]
  10. Fujimoto Y., Chen C.-S., Szeleczky Z., DiTullio D., Sih C. J.. ( 1982a;). Microbial degradation of the phytosterol side chain. 1. Enzymatic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxochol-4-en-24-oic acid and androst-4-ene-3,17-dione. J Am Chem Soc104:4718–4720 [CrossRef]
    [Google Scholar]
  11. Fujimoto Y., Chen C.-S., Gopalan A. S., Sih C. J.. ( 1982b;). Microbial degradation of the phytosterol side chain. II. Incorporation of [14C]-NaHCO3 onto the C-28 position. J Am Chem Soc104:4720–4722[CrossRef]
    [Google Scholar]
  12. Haapalainen A. M., Meriläinen G., Wierenga R. K.. ( 2006;). The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci31:64–71[PubMed][CrossRef]
    [Google Scholar]
  13. Hacking A. J., Quayle J. R.. ( 1974;). Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1. Biochem J139:399–405[PubMed]
    [Google Scholar]
  14. Johnston J. B., Ouellet H., Ortiz de Montellano P. R.. ( 2010;). Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem285:36352–36360 [CrossRef][PubMed]
    [Google Scholar]
  15. Martin C. K. A.. ( 1977;). Microbial cleavage of sterol side chains. Adv Appl Microbiol22:29–58 [CrossRef][PubMed]
    [Google Scholar]
  16. Martin C. K. A., Wagner F.. ( 1976;). Microbial transformation of β-sitosterol by Nocardia sp. M29. Eur J Appl Microbiol2:243–255 [CrossRef]
    [Google Scholar]
  17. Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K.. ( 1995;). Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol61:2079–2085[PubMed]
    [Google Scholar]
  18. McLean K. J., Lafite P., Levy C., Cheesman M. R., Mast N., Pikuleva I. A., Leys D., Munro A. W.. ( 2009;). The structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem284:35524–35533 [CrossRef][PubMed]
    [Google Scholar]
  19. McLeod M. P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L.. & other authors ( 2006;). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A103:15582–15587 [CrossRef][PubMed]
    [Google Scholar]
  20. Nesbitt N. M., Yang X., Fontán P., Kolesnikova I., Smith I., Sampson N. S., Dubnau E.. ( 2010;). A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun78:275–282 [CrossRef][PubMed]
    [Google Scholar]
  21. Ouellet H., Guan S., Johnston J. B., Chow E. D., Kells P. M., Burlingame A. L., Cox J. S., Podust L. M., de Montellano P. R.. ( 2010;). Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol77:730–742 [CrossRef][PubMed]
    [Google Scholar]
  22. Peretó J., López-García P., Moreira D.. ( 2005;). Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J Mol Evol61:65–74[PubMed][CrossRef]
    [Google Scholar]
  23. Petrusma M., Dijkhuizen L., van der Geize R.. ( 2009;). Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9α-hydroxylase, a two-component iron–sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol75:5300–5307[PubMed][CrossRef]
    [Google Scholar]
  24. Rosłoniec K. Z., Wilbrink M. H., Capyk J. K., Mohn W. W., Ostendorf M., van der Geize R., Dijkhuizen L., Eltis L. D.. ( 2009;). Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol74:1031–1043 [CrossRef][PubMed]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Seedorf U., Brysch P., Engel T., Schrage K., Assmann G.. ( 1994;). Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem269:21277–21283[PubMed]
    [Google Scholar]
  27. Sih C. J., Tai H. H., Tsong Y. Y.. ( 1967;). The mechanism of microbial conversion of cholesterol into 17-keto steroids. J Am Chem Soc89:1957–1958[PubMed][CrossRef]
    [Google Scholar]
  28. Sih C. J., Tai H. H., Tsong Y. Y., Lee S. S., Coombe R. G.. ( 1968a;). Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry7:808–818 [CrossRef][PubMed]
    [Google Scholar]
  29. Sih C. J., Wang K. C., Tai H. H.. ( 1968b;). Mechanisms of steroid oxidation by microorganisms. XIII. C22 acid intermediates in the degradation of the cholesterol side chain. Biochemistry7:796–807 [CrossRef][PubMed]
    [Google Scholar]
  30. Song J., Wadhwa L., Bejjani B. A., O’Brien W. E.. ( 2003;). Determination of 3-keto-4-ene steroids and their hydroxylated metabolites catalyzed by recombinant human cytochrome P450 1B1 enzyme using gas chromatography-mass spectrometry with trimethylsilyl derivatization. J Chromatogr B Analyt Technol Biomed Life Sci791:127–135 [CrossRef][PubMed]
    [Google Scholar]
  31. Stegink L. D., Coon M. J.. ( 1968;). Stereospecificity and other properties of highly purified β-hydroxy-β-methylglutaryl coenzyme A cleavage enzyme from bovine liver. J Biol Chem243:5272–5279[PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  34. Uhía I., Galán B., Kendall S. L., Stoker N. G., García J. L.. ( 2012;). Cholesterol metabolism in Mycobacterium smegmatis . Environ Microbiol Rep4:168–182 [CrossRef]
    [Google Scholar]
  35. van der Geize R., Dijkhuizen L.. ( 2004;). Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol7:255–261 [CrossRef][PubMed]
    [Google Scholar]
  36. van der Geize R., Hessels G. I., van Gerwen R., van der Meijden P., Dijkhuizen L.. ( 2001;). Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett205:197–202[PubMed][CrossRef]
    [Google Scholar]
  37. van der Geize R., Yam K., Heuser T., Wilbrink M. H., Hara H., Anderton M. C., Sim E., Dijkhuizen L., Davies J. E.. & other authors ( 2007;). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A104:1947–1952 [CrossRef][PubMed]
    [Google Scholar]
  38. van der Geize R., de Jong W., Hessels G. I., Grommen A. W., Jacobs A. A., Dijkhuizen L.. ( 2008;). A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res36:e151[PubMed][CrossRef]
    [Google Scholar]
  39. Wanders R. J., Denis S., Wouters F., Wirtz K. W., Seedorf U.. ( 1997;). Sterol carrier protein X (SCPx) is a peroxisomal branched-chain β-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem Biophys Res Commun236:565–569[PubMed][CrossRef]
    [Google Scholar]
  40. Wilbrink M. H., Petrusma M., Dijkhuizen L., van der Geize R.. ( 2011;). FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl Environ Microbiol77:4455–4464[PubMed][CrossRef]
    [Google Scholar]
  41. Zaretskaya I. I., Kogan L. M., Tkhomirova O. B., Sis J. D., Wulfson N. S., Zaretskii V. I., Zaikin V. G., Skryabin G. K., Torgov I. V.. ( 1967;). Microbial hydroxylation of the cholesterol side chain. Tetrahedon24:1595–1600[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059501-0
Loading
/content/journal/micro/10.1099/mic.0.059501-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error