1887

Abstract

Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in () , was identified. Targeted gene disruption was used to analyse the role of in virulence and tolerance of adverse factors. Mutants with depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that might influence cell wall biogenesis in . Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that is required for both penetration and postpenetration development of . disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059469-0
2012-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2987.html?itemId=/content/journal/micro/10.1099/mic.0.059469-0&mimeType=html&fmt=ahah

References

  1. Alonso-Monge R., Navarro-García F., Molero G., Diez-Orejas R., Gustin M., Pla J., Sánchez M., Nombela C. ( 1999). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans . J Bacteriol 181:3058–3068[PubMed]
    [Google Scholar]
  2. Alonso-Monge R., Real E., Wojda I., Bebelman J. P., Mager W. H., Siderius M. ( 2001). Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730 [View Article][PubMed]
    [Google Scholar]
  3. Alonso-Monge R., Navarro-García F., Román E., Negredo A. I., Eisman B., Nombela C., Pla J. ( 2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans . Eukaryot Cell 2:351–361 [View Article][PubMed]
    [Google Scholar]
  4. Banuett F. ( 1998). Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62:249–274[PubMed]
    [Google Scholar]
  5. Bilsland E., Molin C., Swaminathan S., Ramne A., Sunnerhagen P. ( 2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53:1743–1756 [View Article][PubMed]
    [Google Scholar]
  6. Bogdan C., Röllinghoff M., Diefenbach A. ( 2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76 [View Article][PubMed]
    [Google Scholar]
  7. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. ( 1993). An osmosensing signal transduction pathway in yeast. Science 259:1760–1763 [View Article][PubMed]
    [Google Scholar]
  8. Chapman R. F. ( 1998). The Insects: Structure and Function Cambridge, UK: Cambridge University Press; [View Article]
    [Google Scholar]
  9. Charnley A. K., Collins S. A. ( 2007). Entomopathogenic fungi and their role in pest control. Environmental and Microbial Relationships159–187 Kubicek C. P., Druzhinina I. S. Berlin: Springer;
    [Google Scholar]
  10. Clarkson J. M., Charnley A. K. ( 1996). New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203 [View Article][PubMed]
    [Google Scholar]
  11. Degols G., Russell P. ( 1997). Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe . Mol Cell Biol 17:3356–3363[PubMed]
    [Google Scholar]
  12. Degols G., Shiozaki K., Russell P. ( 1996). Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe . Mol Cell Biol 16:2870–2877[PubMed]
    [Google Scholar]
  13. Delgado-Jarana J., Sousa S., González F., Rey M., Llobell A. ( 2006). ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum . Microbiology 152:1687–1700 [View Article][PubMed]
    [Google Scholar]
  14. Dixon K. P., Xu J. R., Smirnoff N., Talbot N. J. ( 1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea . Plant Cell 11:2045–2058[PubMed] [CrossRef]
    [Google Scholar]
  15. dos Reis M. C., Pelegrinelli Fungaro M. H., Delgado Duarte R. T., Furlaneto L., Furlaneto M. C. ( 2004). Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana . J Microbiol Methods 58:197–202 [View Article][PubMed]
    [Google Scholar]
  16. Eisman B., Alonso-Monge R., Román E., Arana D., Nombela C., Pla J. ( 2006). The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans . Eukaryot Cell 5:347–358 [View Article][PubMed]
    [Google Scholar]
  17. Ekesi S., Maniania N. K., Lux S. A. ( 2003). Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J Invertebr Pathol 83:157–167 [View Article][PubMed]
    [Google Scholar]
  18. Gao Q., Jin K., Ying S. H., Zhang Y., Xiao G., Shang Y., Duan Z., Hu X., Xie X. Q. & other authors ( 2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum . PLoS Genet 7:e1001264 [View Article][PubMed]
    [Google Scholar]
  19. George V. T., Brooks G., Humphrey T. C. ( 2007). Regulation of cell cycle and stress responses to hydrostatic pressure in fission yeast. Mol Biol Cell 18:4168–4179 [View Article][PubMed]
    [Google Scholar]
  20. Gurr S. J., Unkles S. E., Kinghorn J. R. ( 1987). The structure and organization of nuclear genes in filamentous fungi. Gene Structure in Eukaryotic Microbes93–139 Kinghorn J. R. Oxford: IRL Press;
    [Google Scholar]
  21. He M., Xia Y. ( 2009). Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. FEMS Microbiol Lett 291:127–135 [View Article][PubMed]
    [Google Scholar]
  22. Herskowitz I. ( 1995). MAP kinase pathways in yeast: for mating and more. Cell 80:187–197 [View Article][PubMed]
    [Google Scholar]
  23. Hoch H. C., Galvani C. D., Szarowski D. H., Turner J. N. ( 2005). Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97:580–588 [View Article][PubMed]
    [Google Scholar]
  24. Holder D. J., Kirkland B. H., Lewis M. W., Keyhani N. O. ( 2007). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana . Microbiology 153:3448–3457 [View Article][PubMed]
    [Google Scholar]
  25. Hunt V. L., Charnley A. K. ( 2011). The inhibitory effect of the fungal toxin, destruxin A, on behavioural fever in the desert locust. J Insect Physiol 57:1341–1346 [View Article][PubMed]
    [Google Scholar]
  26. Hunter D. M., Milner R. J., Spurgin P. A. ( 2001). Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull Entomol Res 91:93–99[PubMed]
    [Google Scholar]
  27. Kojima K., Takano Y., Yoshimi A., Tanaka C., Kikuchi T., Okuno T. ( 2004). Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53:1785–1796 [View Article][PubMed]
    [Google Scholar]
  28. Maeta K., Izawa S., Inoue Y. ( 2005). Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 280:253–260[PubMed] [CrossRef]
    [Google Scholar]
  29. McCluskey K. ( 2003). The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol 52:245–262 [View Article][PubMed]
    [Google Scholar]
  30. Mehrabi R., Zwiers L. H., de Waard M. A., Kema G. H. ( 2006). MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola . Mol Plant Microbe Interact 19:1262–1269 [View Article][PubMed]
    [Google Scholar]
  31. Millar J. B., Buck V., Wilkinson M. G. ( 1995). Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 9:2117–2130 [View Article][PubMed]
    [Google Scholar]
  32. Mollapour M., Piper P. W. ( 2006). Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae . FEMS Yeast Res 6:1274–1280 [View Article][PubMed]
    [Google Scholar]
  33. Panadero J., Pallotti C., Rodríguez-Vargas S., Randez-Gil F., Prieto J. A. ( 2006). A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae . J Biol Chem 281:4638–4645 [View Article][PubMed]
    [Google Scholar]
  34. Park S. M., Choi E. S., Kim M. J., Cha B. J., Yang M. S., Kim D. H. ( 2004). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 51:1267–1277 [View Article][PubMed]
    [Google Scholar]
  35. Peng G. X., Wang Z. K., Yin Y. P., Zeng D. Y., Xia Y. X. ( 2008). Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot 27:1244–1250 [View Article]
    [Google Scholar]
  36. Raeder U., Broda P. ( 1985). Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20 [View Article]
    [Google Scholar]
  37. Rangel D. E., Braga G. U., Flint S. D., Anderson A. J., Roberts D. W. ( 2004). Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. J Invertebr Pathol 87:77–83 [View Article][PubMed]
    [Google Scholar]
  38. Robinson M. J., Cobb M. H. ( 1997). Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186 [View Article][PubMed]
    [Google Scholar]
  39. Rodaki A., Bohovych I. M., Enjalbert B., Young T., Odds F. C., Gow N. A., Brown A. J. ( 2009). Glucose promotes stress resistance in the fungal pathogen Candida albicans . Mol Biol Cell 20:4845–4855 [View Article][PubMed]
    [Google Scholar]
  40. Rodríguez-Gabriel M. A., Russell P. ( 2005). Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe . Eukaryot Cell 4:1396–1402 [View Article][PubMed]
    [Google Scholar]
  41. Roux P. P., Blenis J. ( 2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344 [View Article][PubMed]
    [Google Scholar]
  42. San José C., Monge R. A., Pérez-Díaz R., Pla J., Nombela C. ( 1996). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans . J Bacteriol 178:5850–5852[PubMed]
    [Google Scholar]
  43. Segmüller N., Ellendorf U., Tudzynski B., Tudzynski P. ( 2007). BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea . Eukaryot Cell 6:211–221 [View Article][PubMed]
    [Google Scholar]
  44. Shiozaki K., Russell P. ( 1996). Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288 [View Article][PubMed]
    [Google Scholar]
  45. Smith D. A., Nicholls S., Morgan B. A., Brown A. J., Quinn J. ( 2004). A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans . Mol Biol Cell 15:4179–4190 [View Article][PubMed]
    [Google Scholar]
  46. Soto T., Beltrán F. F., Paredes V., Madrid M., Millar J. B., Vicente-Soler J., Cansado J., Gacto M. ( 2002). Cold induces stress-activated protein kinase-mediated response in the fission yeast Schizosaccharomyces pombe . Eur J Biochem 269:5056–5065 [View Article][PubMed]
    [Google Scholar]
  47. St Leger R. J., Wang C. ( 2010). Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 85:901–907 [View Article][PubMed]
    [Google Scholar]
  48. Takatsume Y., Izawa S., Inoue Y. ( 2006). Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe . J Biol Chem 281:9086–9092 [View Article][PubMed]
    [Google Scholar]
  49. Tang Q. Y., Feng M. G. ( 2007). DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining Beijing: Science Press; [View Article]
    [Google Scholar]
  50. Thorsen M., Di Y., Tängemo C., Morillas M., Ahmadpour D., Van der Does C., Wagner A., Johansson E., Boman J. & other authors ( 2006). The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410 [View Article][PubMed]
    [Google Scholar]
  51. Treisman R. ( 1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215 [View Article][PubMed]
    [Google Scholar]
  52. Winkler A., Arkind C., Mattison C. P., Burkholder A., Knoche K., Ota I. ( 2002). Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173 [View Article][PubMed]
    [Google Scholar]
  53. Xia Y. X., Gao M. Y., Clarkson J. M., Charnley A. K. ( 2002). Molecular cloning, characterisation, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae . J Invertebr Pathol 80:127–137 [View Article][PubMed]
    [Google Scholar]
  54. Zhang Y., Zhao J., Fang W., Zhang J., Luo Z., Zhang M., Fan Y., Pei Y. ( 2009). Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol 75:3787–3795 [View Article][PubMed]
    [Google Scholar]
  55. Zhang S., Fan Y., Xia Y. X., Keyhani N. O. ( 2010). Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungus Beauveria bassiana . Appl Microbiol Biotechnol 87:1151–1156 [View Article][PubMed]
    [Google Scholar]
  56. Zhang S., Xia Y. X., Kim B., Keyhani N. O. ( 2011). Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana . Mol Microbiol 80:811–826 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059469-0
Loading
/content/journal/micro/10.1099/mic.0.059469-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error