High-throughput screening with the CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a Free

Abstract

The poultry disease coccidiosis, caused by infection with spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated by the CDK activator XlRINGO ( apid nducer of 2/M rogression in ocytes). Bioinformatics analyses revealed four putative cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite . EtCYC3a was cloned, expressed in and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined and high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059428-0
2012-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2262.html?itemId=/content/journal/micro/10.1099/mic.0.059428-0&mimeType=html&fmt=ahah

References

  1. Al-Sha’er M. A., Taha M. O. ( 2010). Discovery of novel CDK1 inhibitors by combining pharmacophore modeling, QSAR analysis and in silico screening followed by in vitro bioassay. Eur J Med Chem 45:4316–4330 [View Article][PubMed]
    [Google Scholar]
  2. Aziz M. H., Dreckschmidt N. E., Verma A. K. ( 2008). Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032 [CrossRef]
    [Google Scholar]
  3. Bruno S., Ardelt B., Skierski J. S., Traganos F., Darzynkiewicz Z. ( 1992). Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res 52:470–473[PubMed]
    [Google Scholar]
  4. Chapman H. D. ( 1997). Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol 26:221–244 [View Article][PubMed]
    [Google Scholar]
  5. Chauhan H. V. S., Roy S. ( 2007). Poultry Diseases, Diagnosis and Treatment, 3rd edn. New Delhi: New Age Publications;
    [Google Scholar]
  6. Dai Y., Grant S. ( 2003). Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 3:362–370 [View Article][PubMed]
    [Google Scholar]
  7. Dalloul R. A., Lillehoj H. S. ( 2006). Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 5:143–163 [View Article][PubMed]
    [Google Scholar]
  8. Doerig C., Chakrabarti D., Kappes B., Matthews K. ( 2000). The cell cycle in protozoan parasites. Prog Cell Cycle Res 4:163–183 [View Article][PubMed]
    [Google Scholar]
  9. Doerig C., Meijer L., Mottram J. C. ( 2002). Protein kinases as drug targets in parasitic protozoa. Trends Parasitol 18:366–371 [View Article][PubMed]
    [Google Scholar]
  10. Engels K., Beyer C., Suárez Fernández M. L., Bender F., Gaßel M., Unden G., Marhöfer R. J., Mottram J. C., Selzer P. M. ( 2010). Inhibition of Eimeria tenella CDK-related kinase 2: from target identification to lead compounds. ChemMedChem 5:1259–1271 [View Article][PubMed]
    [Google Scholar]
  11. Ferby I., Blazquez M., Palmer A., Eritja R., Nebreda A. R. ( 1999). A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev 13:2177–2189 [View Article][PubMed]
    [Google Scholar]
  12. Hofmann J., Raether W. ( 1990). Improved techniques for the in vitro cultivation of Eimeria tenella in primary chick kidney cells. Parasitol Res 76:479–486 [View Article][PubMed]
    [Google Scholar]
  13. Jeffrey P. D., Russo A. A., Polyak K., Gibbs E., Hurwitz J., Massagué J., Pavletich N. P. ( 1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–320 [View Article][PubMed]
    [Google Scholar]
  14. Karaiskou A., Perez L. H., Ferby I., Ozon R., Jessus C., Nebreda A. R. ( 2001). Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276:36028–36034 [View Article][PubMed]
    [Google Scholar]
  15. Kim S., Jung J. K., Lee H. S., Kim Y., Kim J., Choi K., Baek D.-J., Moon B., Oh K.-S. & other authors ( 2011). Discovery of piperidinyl aminopyrimidine derivatives as IKK-2 inhibitors. Bioorg Med Chem Lett 21:3002–3006 [View Article][PubMed]
    [Google Scholar]
  16. Kinnaird J. H., Bumstead J. M., Mann D. J., Ryan R., Shirley M. W., Shiels B. R., Tomley F. M. ( 2004). EtCRK2, a cyclin-dependent kinase gene expressed during the sexual and asexual phases of the Eimeria tenella life cycle. Int J Parasitol 34:683–692 [View Article][PubMed]
    [Google Scholar]
  17. Le Roch K., Sestier C., Dorin D., Waters N., Kappes B., Chakrabarti D., Meijer L., Doerig C. ( 2000). Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J Biol Chem 275:8952–8958 [View Article][PubMed]
    [Google Scholar]
  18. Malumbres M., Barbacid M. ( 2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166 [View Article][PubMed]
    [Google Scholar]
  19. Mehlhorn H. ( 2008). Encyclopedia of Parasitology, 3rd edn. Berlin: Springer; [View Article]
    [Google Scholar]
  20. Merckx A., Le Roch K., Nivez M. P., Dorin D., Alano P., Gutierrez G. J., Nebreda A. R., Goldring D., Whittle C. & other authors ( 2003). Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum . J Biol Chem 278:39839–39850 [View Article][PubMed]
    [Google Scholar]
  21. Monaco E. A. III, Vallano M. L. ( 2003). Cyclin-dependent kinase inhibitors: cancer killers to neuronal guardians. Curr Med Chem 10:367–379[PubMed] [CrossRef]
    [Google Scholar]
  22. Morgan D. O. ( 1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291 [View Article][PubMed]
    [Google Scholar]
  23. Morrison D. A. ( 2009). Evolution of the Apicomplexa: where are we now?. Trends Parasitol 25:375–382 [View Article][PubMed]
    [Google Scholar]
  24. Nairn A. C., Greengard P. ( 2001). A novel cyclin provides a link between dopamine and RNA processing. Neuron 32:174–176 [View Article][PubMed]
    [Google Scholar]
  25. Nebreda A. R. ( 2006). CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18:192–198 [View Article][PubMed]
    [Google Scholar]
  26. Olashaw N., Pledger W. J. ( 2002). Paradigms of growth control: relation to Cdk activation. Sci STKE 2002:re7 [View Article][PubMed]
    [Google Scholar]
  27. Rohwer A., Marhöfer R. J., Caffrey C. R., Selzer P. M. ( 2011). Drug discovery approaches toward anti-parasitic agents. Drug Discovery in Infectious Diseases, Apicomplexan Parasites – Molecular Approaches toward Targeted Drug Development3–20 Becker K., Selzer P. M. Weinheim: Wiley-VCH; [View Article]
    [Google Scholar]
  28. Russo A. A., Jeffrey P. D., Pavletich N. P. ( 1996). Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3:696–700 [View Article][PubMed]
    [Google Scholar]
  29. Schang L. M., St Vincent M. R., Lacasse J. J. ( 2006). Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 17:293–320[PubMed] [CrossRef]
    [Google Scholar]
  30. Schulman B. A., Lindstrom D. L., Harlow E. ( 1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 95:10453–10458 [View Article][PubMed]
    [Google Scholar]
  31. Shirley M. W. ( 2000). The genome of Eimeria spp., with special reference to Eimeria tenella—a coccidium from the chicken. Int J Parasitol 30:485–493 [View Article][PubMed]
    [Google Scholar]
  32. Shirley M. W., Bedrník P. ( 1997). Live attenuated vaccines against avian coccidiosis: success with precocious and egg-adapted lines of Eimeria . Parasitol Today 13:481–484 [View Article][PubMed]
    [Google Scholar]
  33. Shirley M. W., Smith A. L., Tomley F. M. ( 2005). The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60:285–330 [View Article][PubMed]
    [Google Scholar]
  34. Shirley M. W., Smith A. L., Blake D. P. ( 2007). Challenges in the successful control of the avian coccidia. Vaccine 25:5540–5547 [View Article][PubMed]
    [Google Scholar]
  35. Sielecki T. M., Boylan J. F., Benfield P. A., Trainor G. L. ( 2000). Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 43:1–18 [View Article][PubMed]
    [Google Scholar]
  36. Tamamori M., Ito H., Hiroe M., Terada Y., Marumo F., Ikeda M. A. ( 1998). Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol 275:H2036–H2040[PubMed]
    [Google Scholar]
  37. Wallach M. G., Ashash U., Michael A., Smith N. C. ( 2008). Field application of a subunit vaccine against an enteric protozoan disease. PLoS ONE 3:e3948 [View Article][PubMed]
    [Google Scholar]
  38. Waters N. C., Geyer J. A. ( 2003). Cyclin-dependent protein kinases as therapeutic drug targets for antimalarial drug development. Expert Opin Ther Targets 7:7–17 [View Article][PubMed]
    [Google Scholar]
  39. Williams R. B., Carlyle W. W., Bond D. R., Brown I. A. ( 1999). The efficacy and economic benefits of Paracox, a live attenuated anticoccidial vaccine, in commercial trials with standard broiler chickens in the United Kingdom. Int J Parasitol 29:341–355 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059428-0
Loading
/content/journal/micro/10.1099/mic.0.059428-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed