1887

Abstract

In the respiratory yeast , little is known about the factors regulating the metabolic response to oxygen shortage. After searching for homologues of characterized regulators of the hypoxic response, we identified a gene that we named , which is homologous to . The deletion of strongly reduced both the fermentative and respiratory growth rate and altered fatty acid composition and the unsaturation index of membranes. The reciprocal heterologous expression of and in the corresponding deletion mutant strains suggested that Mga2 and Mga2 are functional homologues. transcription was induced by hypoxia and the glucose sensor Rag4 mediated the hypoxic induction of . Transcription of lipid biosynthetic genes , , and was induced by hypoxia and was dependent on Mga2, except for . Rag4 was required for hypoxic induction of transcription for both Mga2-dependent () and Mga2-independent () structural genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059402-0
2012-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1734.html?itemId=/content/journal/micro/10.1099/mic.0.059402-0&mimeType=html&fmt=ahah

References

  1. Abdulrehman D., Monteiro P. T., Teixeira M. C., Mira N. P., Lourenço A. B., dos Santos S. C., Cabrito T. R., Francisco A. P., Madeira S. C. et al. ( 2011;). YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res39:Database issueD136–D140 [CrossRef][PubMed]
    [Google Scholar]
  2. Bao W.-G., Guiard B., Fang Z.-A., Donnini C., Gervais M., Passos F. M., Ferrero I., Fukuhara H., Bolotin-Fukuhara M.. ( 2008;). Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis . Eukaryot Cell7:1895–1905 [CrossRef][PubMed]
    [Google Scholar]
  3. Becerra M., Lombardía-Ferreira L. J., Hauser N. C., Hoheisel J. D., Tizon B., Cerdán M. E.. ( 2002;). The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol43:545–555 [CrossRef][PubMed]
    [Google Scholar]
  4. Betina S., Goffrini P., Ferrero I., Wésolowski-Louvel M.. ( 2001;). RAG4 gene encodes a glucose sensor in Kluyveromyces lactis . Genetics158:541–548[PubMed]
    [Google Scholar]
  5. Bhattacharya S., Shcherbik N., Vasilescu J., Smith J. C., Figeys D., Haines D. S.. ( 2009;). Identification of lysines within membrane-anchored Mga2p120 that are targets of Rsp5p ubiquitination and mediate mobilization of tethered Mga2p90. J Mol Biol385:718–725 [CrossRef][PubMed]
    [Google Scholar]
  6. Bianchi M. M., Tizzani L., Destruelle M., Frontali L., Wésolowski-Louvel M.. ( 1996;). The ‘petite-negative’ yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol19:27–36 [CrossRef][PubMed]
    [Google Scholar]
  7. Blanco M., Becerra M., González-Siso M. I., Cerdán M. E.. ( 2005;). Functional characterization of KlHEM13, a hypoxic gene of Kluyveromyces lactis . Can J Microbiol51:241–249 [CrossRef][PubMed]
    [Google Scholar]
  8. Blanco M., Núñez L., Tarrío N., Canto E., Becerra M., González-Siso M. I., Cerdán M. E.. ( 2007;). An approach to the hypoxic and oxidative stress responses in Kluyveromyces lactis by analysis of mRNA levels. FEMS Yeast Res7:702–714 [CrossRef][PubMed]
    [Google Scholar]
  9. Camattari A., Bianchi M. M., Branduardi P., Porro D., Brambilla L.. ( 2007;). Induction by hypoxia of heterologous-protein production with the KlPDC1 promoter in yeasts. Appl Environ Microbiol73:922–929 [CrossRef][PubMed]
    [Google Scholar]
  10. Chellappa R., Kandasamy P., Oh C.-S., Jiang Y., Vemula M., Martin C. E.. ( 2001;). The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J Biol Chem276:43548–43556 [CrossRef][PubMed]
    [Google Scholar]
  11. Choi J.-Y., Stukey J., Hwang S.-Y., Martin C. E.. ( 1996;). Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem271:3581–3589 [CrossRef][PubMed]
    [Google Scholar]
  12. Cialfi S., Uccelletti D., Carducci A., Wésolowski-Louvel M., Mancini P., Heipieper H. J., Saliola M.. ( 2011;). KlHsl1 is a component of glycerol response pathways in the milk yeast Kluyveromyces lactis . Microbiology157:1509–1518 [CrossRef][PubMed]
    [Google Scholar]
  13. Davies B. S. J., Rine J.. ( 2006;). A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae . Genetics174:191–201 [CrossRef][PubMed]
    [Google Scholar]
  14. Destruelle M., Menghini R., Frontali L., Bianchi M. M.. ( 1999;). Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation. Yeast15:361–370 [CrossRef][PubMed]
    [Google Scholar]
  15. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C. et al. ( 2004;). Genome evolution in yeasts. Nature430:35–44 [CrossRef][PubMed]
    [Google Scholar]
  16. González-Domínguez M., Méndez-Carro C., Cerdán M. E.. ( 1997;). Isolation and characterization of the KlHEM1 gene in Kluyveromyces lactis . Yeast13:961–971 [CrossRef][PubMed]
    [Google Scholar]
  17. González-Siso M. I., Freire-Picos M. A., Ramil E., González-Domínguez M., Rodríguez Torres A., Cerdán M. E.. ( 2000;). Respirofermentative metabolism in Kluyveromyces lactis: Insights and perspectives. Enzyme Microb Technol26:699–705[PubMed][CrossRef]
    [Google Scholar]
  18. Heipieper H. J., Isken S., Saliola M.. ( 2000;). Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis . Res Microbiol151:777–784 [CrossRef][PubMed]
    [Google Scholar]
  19. Hnatova M., Wésolowski-Louvel M., Dieppois G., Deffaud J., Lemaire M.. ( 2008;). Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis . Eukaryot Cell7:1299–1308 [CrossRef][PubMed]
    [Google Scholar]
  20. Hon T., Dodd A., Dirmeier R., Gorman N., Sinclair P. R., Zhang L., Poyton R. O.. ( 2003;). A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity. J Biol Chem278:50771–50780 [CrossRef][PubMed]
    [Google Scholar]
  21. Hoppe T., Matuschewski K., Rape M., Schlenker S., Ulrich H. D., Jentsch S.. ( 2000;). Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102:577–586 [CrossRef][PubMed]
    [Google Scholar]
  22. Jiang Y., Vasconcelles M. J., Wretzel S., Light A., Martin C. E., Goldberg M. A.. ( 2001;). MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae . Mol Cell Biol21:6161–6169 [CrossRef][PubMed]
    [Google Scholar]
  23. Jiang Y., Vasconcelles M. J., Wretzel S., Light A., Gilooly L., McDaid K., Oh C.-S., Martin C. E., Goldberg M. A.. ( 2002;). Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression. Eukaryot Cell1:481–490 [CrossRef][PubMed]
    [Google Scholar]
  24. Kainou K., Kamisaka Y., Kimura K., Uemura H.. ( 2006;). Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae . Yeast23:605–612 [CrossRef][PubMed]
    [Google Scholar]
  25. Kandasamy P., Vemula M., Oh C.-S., Chellappa R., Martin C. E.. ( 2004;). Regulation of unsaturated fatty acid biosynthesis in Saccharomyces. The endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem279:36586–36592 [CrossRef][PubMed]
    [Google Scholar]
  26. Kastaniotis A. J., Zitomer R. S.. ( 2000;). Rox1 mediated repression. Oxygen dependent repression in yeast. Adv Exp Med Biol475:185–195 [CrossRef][PubMed]
    [Google Scholar]
  27. Kelley R., Ideker T.. ( 2009;). Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide. PLoS Genet5:e1000488 [CrossRef][PubMed]
    [Google Scholar]
  28. Kiers J., Zeeman A.-M., Luttik M., Thiele C., Castrillo J. I., Steensma H. Y., van Dijken J. P., Pronk J. T.. ( 1998;). Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast14:459–469 [CrossRef][PubMed]
    [Google Scholar]
  29. Köhrer K., Domdey H.. ( 1991;). Preparation of high molecular weight RNA. Methods in Enzymologyvol. 194398–405 Guthrie C., Fink G. R.. San Diego: Academic Press;
    [Google Scholar]
  30. Kundaje A., Xin X., Lan C., Lianoglou S., Zhou M., Zhang L., Leslie C.. ( 2008;). A predictive model of the oxygen and heme regulatory network in yeast. PLOS Comput Biol4:e1000224 [CrossRef][PubMed]
    [Google Scholar]
  31. Kwast K. E., Burke P. V., Staahl B. T., Poyton R. O.. ( 1999;). Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci U S A96:5446–5451 [CrossRef][PubMed]
    [Google Scholar]
  32. Kwast K. E., Lai L.-C., Menda N., James D. T. III, Aref S., Burke P. V.. ( 2002;). Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol184:250–265 [CrossRef][PubMed]
    [Google Scholar]
  33. Lamas-Maceiras M., Núñez L., Rodríguez-Belmonte E., González-Siso M. I., Cerdán M. E.. ( 2007;). Functional characterization of KlHAP1: a model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene405:96–107 [CrossRef][PubMed]
    [Google Scholar]
  34. Micolonghi C., Wésolowski-Louvel M., Bianchi M. M.. ( 2011;). The Rag4 glucose sensor is involved in the hypoxic induction of KlPDC1 gene expression in the yeast Kluyveromyces lactis . Eukaryot Cell10:146–148 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller J. H.. ( 1972;). Experiments in Molecular Genetics352–355 Cold Spring Harbor, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  36. Monteiro P. T., Mendes N. D., Teixeira M. C., d’Orey S., Tenreiro S., Mira N. P., Pais H., Francisco A. P., Carvalho A. M. et al. ( 2008;). Yeastract-Discoverer: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae . Nucleic Acids Res36:Database issueD132–D136 [CrossRef][PubMed]
    [Google Scholar]
  37. Nakagawa Y., Sakumoto N., Kaneko Y., Harashima S.. ( 2002;). Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae . Biochem Biophys Res Commun291:707–713 [CrossRef][PubMed]
    [Google Scholar]
  38. Nakagawa Y., Ueda A., Kaneko Y., Harashima S.. ( 2003;). Merging of multiple signals regulating Δ9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae . Mol Genet Genomics269:370–380 [CrossRef][PubMed]
    [Google Scholar]
  39. Neil H., Hnatova M., Wésolowski-Louvel M., Rycovska A., Lemaire M.. ( 2007;). Sck1 activator coordinates glucose transport and glycolysis and is controlled by Rag8 casein kinase I in Kluyveromyces lactis . Mol Microbiol63:1537–1548 [CrossRef][PubMed]
    [Google Scholar]
  40. Núñez L., Rodríguez-Torres A., Cerdán M. E.. ( 2008;). Regulatory elements in the KlHEM1 promoter. Biochim Biophys Acta1779:128–133[PubMed][CrossRef]
    [Google Scholar]
  41. Rolland S., Hnatova M., Lemaire M., Leal-Sanchez J., Wésolowski-Louvel M.. ( 2006;). Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis . Genetics174:617–626 [CrossRef][PubMed]
    [Google Scholar]
  42. Shcherbik N., Haines D. S.. ( 2007;). Cdc48pNpl4p/Udf1p binds and segregates membrane-anchored/tethered complexes via a polyubiquitin signal present on the anchors. Mol Cell25:385–397 [CrossRef][PubMed]
    [Google Scholar]
  43. Shcherbik N., Kee Y., Lyon N., Huibregtse J. M., Haines D. S.. ( 2004;). A single PXY motif located within the carboxyl terminus of Spt23p and Mga2p mediates a physical and functional interaction with ubiquitin ligase Rsp5p. J Biol Chem279:53892–53898 [CrossRef][PubMed]
    [Google Scholar]
  44. Snoek I. S. I., Steensma H. Y.. ( 2006;). Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res6:393–403 [CrossRef][PubMed]
    [Google Scholar]
  45. Teixeira M. C., Monteiro P., Jain P., Tenreiro S., Fernandes A. R., Mira N. P., Alenquer M., Freitas A. T., Oliveira A. L., Sá-Correia I.. ( 2006;). The Yeastract database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae . Nucleic Acids Res34:Database issueD446–D451 [CrossRef][PubMed]
    [Google Scholar]
  46. Uccelletti D., Staneva D., Rufini S., Venkov P., Palleschi C.. ( 2005;). Enhanced secretion of heterologous proteins in Kluyveromyces lactis by overexpression of the GDP-mannose pyrophosphorylase, KlPsa1p. FEMS Yeast Res5:735–746 [CrossRef][PubMed]
    [Google Scholar]
  47. van Ooyen A. J. J., Dekker P., Huang M., Olsthoorn M. M. A., Jacobs D. I., Colussi P. A., Taron C. H.. ( 2006;). Heterologous protein production in the yeast Kluyveromyces lactis . FEMS Yeast Res6:381–392 [CrossRef][PubMed]
    [Google Scholar]
  48. Vasconcelles M. J., Jiang Y., McDaid K., Gilooly L., Wretzel S., Porter D. L., Martin C. E., Goldberg M. A.. ( 2001;). Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem276:14374–14384[PubMed]
    [Google Scholar]
  49. Vik A., Rine J.. ( 2001;). Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae . Mol Cell Biol21:6395–6405 [CrossRef][PubMed]
    [Google Scholar]
  50. Wach A., Brachat A., Pöhlmann R., Philippsen P.. ( 1994;). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast10:1793–1808 [CrossRef][PubMed]
    [Google Scholar]
  51. Weirich J., Goffrini P., Kuger P., Ferrero I., Breunig K. D.. ( 1997;). Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis . Eur J Biochem249:248–257 [CrossRef][PubMed]
    [Google Scholar]
  52. Wésolowski-Louvel M., Prior C., Bornecque D., Fukuhara H.. ( 1992;). Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast8:711–719 [CrossRef]
    [Google Scholar]
  53. Zhang S., Skalsky Y., Garfinkel D. J.. ( 1999;). MGA2 or SPT23 is required for transcription of the delta9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae . Genetics151:473–483[PubMed]
    [Google Scholar]
  54. Zitomer R. S., Lowry C. V.. ( 1992;). Regulation of gene expression by oxygen in Saccharomyces cerevisiae . Microbiol Rev56:1–11[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059402-0
Loading
/content/journal/micro/10.1099/mic.0.059402-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error